ﻻ يوجد ملخص باللغة العربية
We revise the use of 8-dimensional conformal, complex (Cartan) domains as a base for the construction of conformally invariant quantum (field) theory, either as phase or configuration spaces. We follow a gauge-invariant Lagrangian approach (of nonlinear sigma-model type) and use a generalized Dirac method for the quantization of constrained systems, which resembles in some aspects the standard approach to quantizing coadjoint orbits of a group G. Physical wave functions, Haar measures, orthonormal basis and reproducing (Bergman) kernels are explicitly calculated in and holomorphic picture in these Cartan domains for both scalar and spinning quantum particles. Similarities and differences with other results in the literature are also discussed and an extension of Schwingers Master Theorem is commented in connection with closure relations. An adaptation of the Borns Reciprocity Principle (BRP) to the conformal relativity, the replacement of space-time by the 8-dimensional conformal domain at short distances and the existence of a maximal acceleration are also put forward.
In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar
CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the re
We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expresse
We establish duality between real forms of the quantum deformation of the 4-dimensional orthogonal group studied by Fioresi et al. and the classification work made by Borowiec et al.. Classically these real forms are the isometry groups of $mathbb{R}