ﻻ يوجد ملخص باللغة العربية
A steeper fall of fusion excitation function, compared to the predictions of coupled-channels models, at energies below the lowest barrier between the reaction partners, is termed as deep sub-barrier fusion hindrance. This phenomenon has been observed in many symmetric and nearly-symmetric systems. Different physical origins of the hindrance have been proposed. This work aims to study the probable effects of direct reactions on deep sub-barrier fusion cross sections. Fusion (evaporation residue) cross sections have been measured for the system $^{19}$F+$^{181}$Ta, from above the barrier down to the energies where fusion hindrance is expected to come into play. Coupled-channels calculation with standard Woods-Saxon potential gives a fair description of the fusion excitation function down to energies $simeq 14%$ below the barrier for the present system. This is in contrast with the observation of increasing fusion hindrance in asymmetric reactions induced by increasingly heavier projectiles, textit{viz.} $^{6,7}$Li, $^{11}$B, $^{12}$C and $^{16}$O. The asymmetric reactions, which have not shown any signature of fusion hindrance within the measured energy range, are found to be induced by projectiles with lower $alpha$ break-up threshold, compared to the reactions which have shown signatures of fusion hindrance. In addition, most of the $Q$-values for light particles pick-up channels are negative for the reactions which have exhibited strong signatures of fusion hindrance, textit{viz.} $^{12}$C+$^{198}$Pt and $^{16}$O+$^{204,208}$Pb. Thus, break-up of projectile and particle transfer channels with positive $Q$-values seem to compensate for the hindrance in fusion deep below the barrier. Inclusion of break-up and transfer channels within the framework of coupled-channels calculation would be of interest.
Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12
Fusion excitation function of $^{35}$Cl + $^{130}$Te system is measured in the energy range around the Coulomb barrier and analyzed in the framework of the coupled-channels approach. The role of projectile deformation, nuclear structure, and the coup
The fusion excitation functions have been measured with rather good accuracy for 32S+90Zr and 32S+96Zr near and below the Coulomb barrier. The sub-barrier cross sections for 32S+96Zr are much larger compared with 32S+90Zr. Semi-classical coupled-chan
Fusion cross-sections have been measured for the asymmetric system 16O+165Ho at energies near and deep below the Coulomb barrier with an aim to investigate the occurrence of fusion hindrance for the system. Fusion cross sections down to ~ 700 nb have
To disentangle the role of shell effects and dynamics, fission fragment mass distributions of $^{191}$Au, a nucleus in the newly identified island of mass asymmetric fission in the sub-lead region, have been measured down to excitation energy of $app