ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of fusion hindrance for asymmetric systems at deep sub barrier energies

62   0   0.0 ( 0 )
 نشر من قبل Aradhana Shrivastava
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C + 198Pt system but not in 7Li + 198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C,16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.



قيم البحث

اقرأ أيضاً

A steeper fall of fusion excitation function, compared to the predictions of coupled-channels models, at energies below the lowest barrier between the reaction partners, is termed as deep sub-barrier fusion hindrance. This phenomenon has been observe d in many symmetric and nearly-symmetric systems. Different physical origins of the hindrance have been proposed. This work aims to study the probable effects of direct reactions on deep sub-barrier fusion cross sections. Fusion (evaporation residue) cross sections have been measured for the system $^{19}$F+$^{181}$Ta, from above the barrier down to the energies where fusion hindrance is expected to come into play. Coupled-channels calculation with standard Woods-Saxon potential gives a fair description of the fusion excitation function down to energies $simeq 14%$ below the barrier for the present system. This is in contrast with the observation of increasing fusion hindrance in asymmetric reactions induced by increasingly heavier projectiles, textit{viz.} $^{6,7}$Li, $^{11}$B, $^{12}$C and $^{16}$O. The asymmetric reactions, which have not shown any signature of fusion hindrance within the measured energy range, are found to be induced by projectiles with lower $alpha$ break-up threshold, compared to the reactions which have shown signatures of fusion hindrance. In addition, most of the $Q$-values for light particles pick-up channels are negative for the reactions which have exhibited strong signatures of fusion hindrance, textit{viz.} $^{12}$C+$^{198}$Pt and $^{16}$O+$^{204,208}$Pb. Thus, break-up of projectile and particle transfer channels with positive $Q$-values seem to compensate for the hindrance in fusion deep below the barrier. Inclusion of break-up and transfer channels within the framework of coupled-channels calculation would be of interest.
Fusion cross-sections have been measured for the asymmetric system 16O+165Ho at energies near and deep below the Coulomb barrier with an aim to investigate the occurrence of fusion hindrance for the system. Fusion cross sections down to ~ 700 nb have been measured using the off-beam gamma-ray technique. The fusion cross sections have been compared with the coupled channel calculations. Although the onset of fusion hindrance could not be observed experimentally, an indication of a small deviation of the experimental fusion cross-sections with respect to the calculated cross-sections could be observed at the lowest energy measured. However, the energy onset of fusion hindrance has been obtained from the extrapolation technique and is found to be about 2 MeV below the lowest energy of the present measurement.
The recent discovery of heavy-ion fusion hindrance at far sub-barrier energies has focused much attention on both experimental and theoretical studies of this phenomenon. Most of the experimental evidence comes from medium-heavy systems such as Ni+Ni to Zr+Zr, for which the compound system decays primarily by charged-particle evaporation. In order to study heavier systems, it is, however, necessary to measure also the fraction of the decay that goes into fission fragments. In the present work we have, therefore, measured the fission cross section of 16O+197Au down to unprecedented far sub-barrier energies using a large position sensitive PPAC placed at backward angles. The preliminary cross sections will be discussed and compared to earlier studies at near-barrier energies. No conclusive evidence for sub-barrier hindrance was found, probably because the measurements were not extended to sufficiently low energies.
Fusion excitation function of $^{35}$Cl + $^{130}$Te system is measured in the energy range around the Coulomb barrier and analyzed in the framework of the coupled-channels approach. The role of projectile deformation, nuclear structure, and the coup lings of inelastic excitations and positive Q$-$value neutron transfer channels in sub-barrier fusion are investigated through the comparison of reduced fusion excitation functions of $^{35,37}$Cl +$^{130}$Te systems. The reduced fusion excitation function of $^{35}$Cl + $^{130}$Te system shows substantial enhancement over $^{37}$Cl + $^{130}$Te system in sub-barrier energy region which is attributed to the presence of positive Q-value neutron transfer channels in $^{35}$Cl + $^{130}$Te system. Findings of this work strongly suggest the importance of +2$n$ - transfer coupling in sub-barrier fusion apart from the simple inclusion of inelastic excitations of interacting partners, and are in stark contrast with the results presented by Kohley textit{et al.}, [Phys. Rev. Lett. 107, 202701 (2011)].
Above-barrier fusion cross-sections for an isotopic chain of oxygen isotopes with A=16-19 incident on a $^{12}$C target are presented. Experimental data are compared with both static and dynamical microscopic calculations. These calculations are unab le to explain the $sim$37% increase in the average above-barrier fusion cross-section observed for $^{19}$O as compared to $beta$-stable oxygen isotopes. This result suggests that for neutron-rich nuclei existing time-dependent Hartree-Fock calculations underpredict the role of dynamics at near-barrier energies. High-quality measurement of above-barrier fusion for an isotopic chain of increasingly neutron-rich nuclei provides an effective means to probe this fusion dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا