ﻻ يوجد ملخص باللغة العربية
The dimensionality of an electronic quantum system is decisive for its properties. In 1D electrons form a Luttinger liquid and in 2D they exhibit the quantum Hall effect. However, very little is known about the behavior of electrons in non-integer, i.e. fractional dimensions. Here, we show how arrays of artificial atoms can be defined by controlled positioning of CO molecules on a Cu(111) surface, and how these sites couple to form electronic Sierpinski fractals. We characterize the electron wavefunctions at different energies with scanning tunneling microscopy and spectroscopy and show that they inherit the fractional dimension. Wavefunctions delocalized over the Sierpinski structure decompose into self-similar parts at higher energy, and this scale invariance can also be retrieved in reciprocal space. Our results show that electronic quantum fractals can be man-made by atomic manipulation in a scanning tunneling microscope. The same methodology will allow to address fundamental questions on the effects of spin-orbit interaction and a magnetic field on electrons in non-integer dimensions. Moreover, the rational concept of artificial atoms can readily be transferred to planar semiconductor electronics, allowing for the exploration of electrons in a well-defined fractal geometry, including interactions and external fields.
We provide a thorough study of a carbon divacancy, a fundamental but almost unexplored point defect in graphene. Low temperature scanning tunneling microscopy (STM) imaging of irradiated graphene on different substrates enabled us to identify a commo
We present a design for a switchable nanomagnetic atom mirror formed by an array of 180{deg} domain walls confined within Ni80Fe20 planar nanowires. A simple analytical model is developed which allows the magnetic field produced by the domain wall ar
Organic charge-transfer complexes (CTCs) formed by strong electron acceptor and strong electron donor molecules are known to exhibit exotic effects such as superconductivity and charge density waves. We present a low-temperature scanning tunneling mi
The extraordinary electronic and optical properties of the crystal-to-amorphous transition in phase-change materials led to important developments in memory applications. A promising outlook is offered by nanoscaling such phase-change structures. Fol
In this paper we present our progress towards the opto-electronic characterization of indium phosphide (InP) nanowire transistors at milli-Kelvin (mK) temperatures. First, we have investigated the electronic transport of the InP nanowires by current-