ﻻ يوجد ملخص باللغة العربية
We report mainly the heat capacity and Mossbauer study of self flux grown FeTe single crystal, which is ground state compound of the Fe chalcogenides superconducting series, i.e., FeTe1-x(Se/S)x. The as grown FeTe single crystal is large enough to the tune of few cm and the same crystallizes in tetragonal structure having space group of P4/nmm. FeTe shows the structural/magnetic phase transition at 70K in both magnetic and resistivity measurements. Heat capacity measurement also confirms the coupled structural/magnetic transition at the same temperature. The Debye model fitting of low temperature (below 70K) heat capacity exhibited Debye temperature to be 324K. MOssbauer spectra are performed at 300K and 5K. The 300K spectra showed two paramagnetic doublets and the 5K spectra exhibited hyperfine magnetic sextet with an average hyperfine field of 10.6Tesla matching with the results of Yoshikazu Mizuguchi et al.
We report synthesis of non superconducting parent compound of iron chalcogenide, i.e., FeTe single crystal by self flux method. The FeTe single crystal is crystallized in tetragonal structure with the P4/nmm space group. The detailed SEM (scanning el
We present heat capacity measurements on a series of superconducting Cu$_x$TiSe$_2$ single crystals with different Cu content down to 600 mK and up to 1 T performed by ac microcalorimetry. The samples cover a large portion of the phase diagram from a
We report the development of a technique to measure heat capacity at large uniaxial pressure using a piezoelectric-driven device generating compressive and tensile strain in the sample. Our setup is optimized for temperatures ranging from 8 K down to
We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown single crystal of BaFe2As2. A first-order antiferromagnetic (AF) transition near 135 K was detected by the splitting of NMR lines, which is accompanied by sim
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both