ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Observations of Low Surface Brightness Cluster Abell 1631

180   0   0.0 ( 0 )
 نشر من قبل Yasunori Babazaki Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present analysis results for a nearby galaxy cluster Abell 1631 at $z~=~0.046$ using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5~Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (${rm a~few} times~10^{-4}~{rm cm^{-3}}$) at the given temperature ($sim2.9~{rm keV}$) compared with X-ray-selected clusters. The entropy profile and value within the central region ($r<0.1~r_{200}$) are found to be flatter and higher ($gtrsim400~ {rm keV~cm}^2$). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies for relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.



قيم البحث

اقرأ أيضاً

125 - J. E. Krick , C. Bridge , V. Desai 2011
We present 3.6 and 4.5 micron Spitzer IRAC imaging over 0.77 square degrees at the Virgo cluster core for the purpose of understanding the formation mechanisms of the low surface brightness intracluster light features. Instrumental and astrophysical backgrounds that are hundreds of times higher than the signal were carefully characterized and removed. We examine both intracluster light plumes as well as the outer halo of the giant elliptical M87. For two intracluster light plumes, we use optical colors to constrain their ages to be greater than 3 & 5 Gyr, respectively. Upper limits on the IRAC fluxes constrain the upper limits to the masses, and optical detections constrain the lower limits to the masses. In this first measurement of mass of intracluster light plumes we find masses in the range of 5.5 x 10^8 - 4.5 x 10^9 and 2.1 x 10^8 - 1.5 x 10^9 solar masses for the two plumes for which we have coverage. Given their expected short lifetimes, and a constant production rate for these types of streams, integrated over Virgos lifetime, they can account for the total ICL content of the cluster implying that we do not need to invoke ICL formation mechanisms other than gravitational mechanisms leading to bright plumes. We also examined the outer halo of the giant elliptical M87. The color profile from the inner to outer halo of M87 (160 Kpc) is consistent with either a flat or optically blue gradient, where a blue gradient could be due to younger or lower metallicity stars at larger radii. The similarity of the age predicted by both the infrared and optical colors (> few Gyr) indicates that the optical measurements are not strongly affected by dust extinction.
We report Suzaku observations of the galaxy cluster Abell 1795 that extend to r_200 ~ 2 Mpc, the radius within which the mean cluster mass density is 200 times the cosmic critical density. These observations are the first to probe the state of the in tracluster medium in this object at r > 1.3 Mpc. We sample two disjoint sectors in the cluster outskirts (1.3 < r < 1.9 Mpc) and detect X-ray emission in only one of them to a limiting (3-sigma) soft X-ray surface brightness of B(0.5-2 keV) = 1.8 x 10^-12 erg s^-1 cm^-2 deg^-2, a level less than 20% of the cosmic X-ray background brightness. We trace the run of temperature with radius at r > 0.4 Mpc and find that it falls relatively rapidly (T ~ r^-0.9), reaching a value about one third of its peak at the largest radius we can measure it. Assuming the intracluster medium is in hydrostatic equilibrium and is polytropic, we find a polytropic index of 1.3 +0.3-0.2 and we estimate a mass of 4.1 +0.5-0.3 x 10^14 M_solar within 1.3 Mpc, somewhat (2.7-sigma) lower than that reported by previous observers. However, our observations provide evidence for departure from hydrostatic equilibrium at radii as small as r ~ 1.3 Mpc ~ r_500 in this apparently regular and symmetrical cluster.
The results from Suzaku XIS observations of the relaxed cluster of galaxies Abell2052 are presented. Offset pointing data are used to estimate the Galactic foreground emission in the direction to the cluster. Significant soft X-ray excess emission ab ove this foreground, the intra-cluster medium emission, and other background components is confirmed and resolved spectroscopically and radially. This excess can be described either by (a) local variations of known Galactic emission components or (b) an additional thermal component with temperature of about 0.2 keV, possibly associated with the cluster. The radial temperature and metal abundance profiles of the intra-cluster medium are measured within sim 20 in radius (about 60% of the virial radius) from the cluster center . The temperature drops radially to 0.5-0.6 of the peak value at a radius of sim 15. The gas-mass-weighted metal abundance averaged over the observed region is found to be 0.21 +- 0.05 times solar.
Abell 548W, one of the galaxy clusters located in the Abell 548 region, has about an order of magnitude lower X-ray luminosity compared to ordinal clusters in view of the well known intracluster medium (ICM) temperature vs X-ray luminosity (kT-L_X) r elation. The cluster hosts a pair of diffuse radio sources to the north west and north, both about 10 apart from the cluster center. They are candidate radio relics, frequently associated with merging clusters. A Suzaku deep observation with exposure of 84.4 ks was performed to search signatures for merging in this cluster. The XIS detectors successfully detected the ICM emission out to 16 from the cluster center. The temperature is ~3.6 keV around its center, and ~2 keV at the outermost regions. The hot region (~6 keV) aside the relic candidates shifted to the cluster center reported by XMM-Newton was not seen in the Suzaku data, although its temperature of 3.6 keV itself is higher than the average temperature of 2.5 keV around the radio sources. In addition, a signature of a cool (kT ~0.9 keV) component was found around the north west source. A marginal temperature jump at its outer-edge was also found, consistent with the canonical idea of shock acceleration origin of the radio relics. The cluster has among the highest central entropy of ~400 keV cm^2 and is one of the so-called low surface brightness clusters. Taking into account the fact that its shape itself is relatively circular and smooth and also its temperature structure is nearly flat, possible scenarios for merging is discussed.
The results of Suzaku observations of the outskirts of Abell 3395 including a large-scale structure filament toward Abell 3391 are presented. We measured temperature and abundance distributions from the southern outskirt of Abell 3395 to the north at the virial radius, where a filament structure has been found in the former X-ray and Sunyaev-Zeldovich effect observations between Abell 3391 and 3395. The overall temperature structure is consistent with the universal profile proposed by Okabe et al.(2014) for relaxed clusters except for the filament region. A hint of the ICM heating is found between the two clusters, which might be due to the interaction of them in the early phase of a cluster merger. Although we obtained relatively low metal abundance of $Z=0.169^{+0.164+0.009+0.018 }_{-0.150-0.004-0.015 }$ solar, where the first, second, and third errors are statistical, cosmic X-ray background systematic, and non X-ray background systematic, respectively, at the virial radius in the filament, our results are still consistent with the former results of other clusters ($Z sim 0.3$ solar) within errors. Therefore, our results are also consistent with the early enrichment scenario. We estimated Compton $y$ parameters only from X-ray results in the region between Abell 3391 and 3395 assuming a simple geometry. They are smaller than the previous SZ results with Planck satellite. The difference could be attributed to a more elaborate geometry such as a filament inclined to the line-of-sight direction, or underestimation of the X-ray temperature because of the unresolved multi-temperature structures or undetected hot X-ray emission of the shock heated gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا