ﻻ يوجد ملخص باللغة العربية
Popular generative model learning methods such as Generative Adversarial Networks (GANs), and Variational Autoencoders (VAE) enforce the latent representation to follow simple distributions such as isotropic Gaussian. In this paper, we argue that learning a complicated distribution over the latent space of an auto-encoder enables more accurate modeling of complicated data distributions. Based on this observation, we propose a two stage optimization procedure which maximizes an approximate implicit density model. We experimentally verify that our method outperforms GANs and VAEs on two image datasets (MNIST, CELEB-A). We also show that our approach is amenable to learning generative model for sequential data, by learning to generate speech and music.
We propose an adversarial training procedure for learning a causal implicit generative model for a given causal graph. We show that adversarial training can be used to learn a generative model with true observational and interventional distributions
Recently, there has been a growing interest in the problem of learning rich implicit models - those from which we can sample, but can not evaluate their density. These models apply some parametric function, such as a deep network, to a base measure,
End-to-end optimization has achieved state-of-the-art performance on many specific problems, but there is no straight-forward way to combine pretrained models for new problems. Here, we explore improving modularity by learning a post-hoc interface be
We propose and study the problem of distribution-preserving lossy compression. Motivated by recent advances in extreme image compression which allow to maintain artifact-free reconstructions even at very low bitrates, we propose to optimize the rate-
Out-of-distribution (OoD) detection is a natural downstream task for deep generative models, due to their ability to learn the input probability distribution. There are mainly two classes of approaches for OoD detection using deep generative models,