ﻻ يوجد ملخص باللغة العربية
We present a superconducting micro-resonator array fabrication method that is scalable, reconfigurable, and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of $2.7 times 10^{-3}$. We exploit this finding to increase the yield of the BLAST-TNG $250 ; mutext{m}$ production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode (LED) mapper technique demonstrated previously, we first map the measured resonance freque
For the need of measurements focused in condensed matter physics and especially Bernoulli effect in superconductors we have developed an active resonator with dual operational amplifiers. A tunable high-Q resonator is performed in the schematics of t
Complex cryogenics is still a strong limitation to the spread of quantum voltage standards and cryogen-free operation is then particularly interesting for Josephson standards. The main difficulties in He-free refrigeration are related to chip thermal
We demonstrate a 16-pixel array of radio-frequency superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, reducing the required bias and readout lines to a single microwave feed
Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical and structural properties of condensed matter. Brillouin-Raman investigations currently require s