ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab Initio No Core Shell Model with Leadership-Class Supercomputers

342   0   0.0 ( 0 )
 نشر من قبل James Vary
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear structure and reaction theory is undergoing a major renaissance with advances in many-body methods, strong interactions with greatly improved links to Quantum Chromodynamics (QCD), the advent of high performance computing, and improved computational algorithms. Predictive power, with well-quantified uncertainty, is emerging from non-perturbative approaches along with the potential for guiding experiments to new discoveries. We present an overview of some of our recent developments and discuss challenges that lie ahead. Our foci include: (1) strong interactions derived from chiral effective field theory; (2) advances in solving the large sparse matrix eigenvalue problem on leadership-class supercomputers; (3) selected observables in light nuclei with the JISP16 interaction; (4) effective electroweak operators consistent with the Hamiltonian; and, (5) discussion of A=48 system as an opportunity for the no-core approach with the reintroduction of the core.



قيم البحث

اقرأ أيضاً

We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function meth od. Starting from two- and three-nucleon interactions from chiral effective field theory, we investigate the electric monopole, dipole, and quadrupole response of the even oxygen isotopes from 16-O to 24-O. The method describes the full energy range from low-lying excitations to the giant resonance region and beyond in a unified and consistent framework, including a complete description of fragmentation and fine-structure. This opens unique opportunities for understanding dynamic properties of nuclei from first principles and to further constrain nuclear interactions. We demonstrate the computational efficiency and the robust model-space convergence of our approach and compare to established approximate methods, such as the Random Phase Approximation, shedding new light on their deficiencies.
253 - R. Roth , P. Navratil 2007
We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for 4He and 16O. Then, we present the first converged calculations for the ground state of 40Ca within no-core model spaces including up to 16hbarOmega-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.
The existence of multi-neutron systems has always been a debatable question. Indeed, both inter-nucleon correlations and a large continuum coupling occur in these states. We then employ the ab-initio no-core Gamow shell model to calculate the resonan t energies and widths of the trineutron and tetraneutron systems with realistic interactions. Our results indicate that trineutron and tetraneutron are both unbound and bear broad widths. The calculated energy and width of tetraneutron are also comparable with recent experimental data. Moreover, our calculations suggest that the energy of trineutron is lower than that of tetraneutron, while its resonance width is also narrower. This strongly suggests that trineutron is more likely to be experimentally observed than tetraneutron. We thus suggest experimentalists to search for trineutron at low energy.
202 - G. Popa , M. Burrows , Ch. Elster 2019
Constructing microscopic effective interactions (`optical potentials) for nucleon-nucleus (NA) elastic scattering requires in first order off-shell nucleon-nucleon (NN) scattering amplitudes between the projectile and the struck target nucleon and no nlocal one-body density matrices. While the NN amplitudes and the {it ab intio} no-core shell-model (NCSM) calculations always contain the full spin structure of the NN problem, one-body density matrices used in traditional microscopic folding potential neglect spin contributions inherent in the one-body density matrix. Here we derive and show the expectation values of the spin-orbit contribution of the struck nucleon with respect to the rest of the nucleus for $^{4}$He, $^{6}$He, $^{12}$C, and $^{16}$O and compare them with the scalar one-body density matrix.
115 - M. Burrows , Ch. Elster , G. Popa 2017
[Background:] It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from {it ab initio} no-core-shell-model (NCSM) calculations are to be used in reaction calculations, translationally invari ant nonlocal densities must be available. [Purpose:] Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wavefunctions up to now has only been developed for local densities. [Results:] A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of $^4$He, $^6$Li, $^{12}$C, and $^{16}$O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space [Conclusions:] We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and can not be described with simple functional forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا