ترغب بنشر مسار تعليمي؟ اضغط هنا

Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions

166   0   0.0 ( 0 )
 نشر من قبل Albert Gatt
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The past few years have witnessed renewed interest in NLP tasks at the interface between vision and language. One intensively-studied problem is that of automatically generating text from images. In this paper, we extend this problem to the more specific domain of face description. Unlike scene descriptions, face descriptions are more fine-grained and rely on attributes extracted from the image, rather than objects and relations. Given that no data exists for this task, we present an ongoing crowdsourcing study to collect a corpus of descriptions of face images taken `in the wild. To gain a better understanding of the variation we find in face description and the possible issues that this may raise, we also conducted an annotation study on a subset of the corpus. Primarily, we found descriptions to refer to a mixture of attributes, not only physical, but also emotional and inferential, which is bound to create further challenges for current image-to-text methods.



قيم البحث

اقرأ أيضاً

Developers of text generation models rely on automated evaluation metrics as a stand-in for slow and expensive manual evaluations. However, image captioning metrics have struggled to give accurate learned estimates of the semantic and pragmatic succe ss of output text. We address this weakness by introducing the first discourse-aware learned generation metric for evaluating image descriptions. Our approach is inspired by computational theories of discourse for capturing information goals using coherence. We present a dataset of image$unicode{x2013}$description pairs annotated with coherence relations. We then train a coherence-aware metric on a subset of the Conceptual Captions dataset and measure its effectiveness$unicode{x2014}$its ability to predict human ratings of output captions$unicode{x2014}$on a test set composed of out-of-domain images. We demonstrate a higher Kendall Correlation Coefficient for our proposed metric with the human judgments for the results of a number of state-of-the-art coherence-aware caption generation models when compared to several other metrics including recently proposed learned metrics such as BLEURT and BERTScore.
Code-switching is the communication phenomenon where speakers switch between different languages during a conversation. With the widespread adoption of conversational agents and chat platforms, code-switching has become an integral part of written co nversations in many multi-lingual communities worldwide. This makes it essential to develop techniques for summarizing and understanding these conversations. Towards this objective, we introduce abstractive summarization of Hindi-English code-switched conversations and develop the first code-switched conversation summarization dataset - GupShup, which contains over 6,831 conversations in Hindi-English and their corresponding human-annotated summaries in English and Hindi-English. We present a detailed account of the entire data collection and annotation processes. We analyze the dataset using various code-switching statistics. We train state-of-the-art abstractive summarization models and report their performances using both automated metrics and human evaluation. Our results show that multi-lingual mBART and multi-view seq2seq models obtain the best performances on the new dataset
Image description task has been invariably examined in a static manner with qualitative presumptions held to be universally applicable, regardless of the scope or target of the description. In practice, however, different viewers may pay attention to different aspects of the image, and yield different descriptions or interpretations under various contexts. Such diversity in perspectives is difficult to derive with conventional image description techniques. In this paper, we propose a customized image narrative generation task, in which the users are interactively engaged in the generation process by providing answers to the questions. We further attempt to learn the users interest via repeating such interactive stages, and to automatically reflect the interest in descriptions for new images. Experimental results demonstrate that our model can generate a variety of descriptions from single image that cover a wider range of topics than conventional models, while being customizable to the target user of interaction.
185 - Xuehui Sun , Zihan Zhou , Yuda Fan 2019
In the current field of computer vision, automatically generating texts from given images has been a fully worked technique. Up till now, most works of this area focus on image content describing, namely image-captioning. However, rare researches foc us on generating product review texts, which is ubiquitous in the online shopping malls and is crucial for online shopping selection and evaluation. Different from content describing, review texts include more subjective information of customers, which may bring difference to the results. Therefore, we aimed at a new field concerning generating review text from customers based on images together with the ratings of online shopping products, which appear as non-image attributes. We made several adjustments to the existing image-captioning model to fit our task, in which we should also take non-image features into consideration. We also did experiments based on our model and get effective primary results.
In this paper, we discuss the development of a multilingual annotated corpus of misogyny and aggression in Indian English, Hindi, and Indian Bangla as part of a project on studying and automatically identifying misogyny and communalism on social medi a (the ComMA Project). The dataset is collected from comments on YouTube videos and currently contains a total of over 20,000 comments. The comments are annotated at two levels - aggression (overtly aggressive, covertly aggressive, and non-aggressive) and misogyny (gendered and non-gendered). We describe the process of data collection, the tagset used for annotation, and issues and challenges faced during the process of annotation. Finally, we discuss the results of the baseline experiments conducted to develop a classifier for misogyny in the three languages.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا