ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Accuracy Low-Precision Training

78   0   0.0 ( 0 )
 نشر من قبل Christopher De Sa
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-precision computation is often used to lower the time and energy cost of machine learning, and recently hardware accelerators have been developed to support it. Still, it has been used primarily for inference - not training. Previous low-precision training algorithms suffered from a fundamental tradeoff: as the number of bits of precision is lowered, quantization noise is added to the model, which limits statistical accuracy. To address this issue, we describe a simple low-precision stochastic gradient descent variant called HALP. HALP converges at the same theoretical rate as full-precision algorithms despite the noise introduced by using low precision throughout execution. The key idea is to use SVRG to reduce gradient variance, and to combine this with a novel technique called bit centering to reduce quantization error. We show that on the CPU, HALP can run up to $4 times$ faster than full-precision SVRG and can match its convergence trajectory. We implemented HALP in TensorQuant, and show that it exceeds the validation performance of plain low-precision SGD on two deep learning tasks.



قيم البحث

اقرأ أيضاً

Learning Rate (LR) is an important hyper-parameter to tune for effective training of deep neural networks (DNNs). Even for the baseline of a constant learning rate, it is non-trivial to choose a good constant value for training a DNN. Dynamic learnin g rates involve multi-step tuning of LR values at various stages of the training process and offer high accuracy and fast convergence. However, they are much harder to tune. In this paper, we present a comprehensive study of 13 learning rate functions and their associated LR policies by examining their range parameters, step parameters, and value update parameters. We propose a set of metrics for evaluating and selecting LR policies, including the classification confidence, variance, cost, and robustness, and implement them in LRBench, an LR benchmarking system. LRBench can assist end-users and DNN developers to select good LR policies and avoid bad LR policies for training their DNNs. We tested LRBench on Caffe, an open source deep learning framework, to showcase the tuning optimization of LR policies. Evaluated through extensive experiments, we attempt to demystify the tuning of LR policies by identifying good LR policies with effective LR value ranges and step sizes for LR update schedules.
Mixed precision training (MPT) is becoming a practical technique to improve the speed and energy efficiency of training deep neural networks by leveraging the fast hardware support for IEEE half-precision floating point that is available in existing GPUs. MPT is typically used in combination with a technique called loss scaling, that works by scaling up the loss value up before the start of backpropagation in order to minimize the impact of numerical underflow on training. Unfortunately, existing methods make this loss scale value a hyperparameter that needs to be tuned per-model, and a single scale cannot be adapted to different layers at different training stages. We introduce a loss scaling-based training method called adaptive loss scaling that makes MPT easier and more practical to use, by removing the need to tune a model-specific loss scale hyperparameter. We achieve this by introducing layer-wise loss scale values which are automatically computed during training to deal with underflow more effectively than existing methods. We present experimental results on a variety of networks and tasks that show our approach can shorten the time to convergence and improve accuracy compared to the existing state-of-the-art MPT and single-precision floating point
Reduced precision computation for deep neural networks is one of the key areas addressing the widening compute gap driven by an exponential growth in model size. In recent years, deep learning training has largely migrated to 16-bit precision, with s ignificant gains in performance and energy efficiency. However, attempts to train DNNs at 8-bit precision have met with significant challenges because of the higher precision and dynamic range requirements of back-propagation. In this paper, we propose a method to train deep neural networks using 8-bit floating point representation for weights, activations, errors, and gradients. In addition to reducing compute precision, we also reduced the precision requirements for the master copy of weights from 32-bit to 16-bit. We demonstrate state-of-the-art accuracy across multiple data sets (imagenet-1K, WMT16) and a broader set of workloads (Resnet-18/34/50, GNMT, Transformer) than previously reported. We propose an enhanced loss scaling method to augment the reduced subnormal range of 8-bit floating point for improved error propagation. We also examine the impact of quantization noise on generalization and propose a stochastic rounding technique to address gradient noise. As a result of applying all these techniques, we report slightly higher validation accuracy compared to full precision baseline.
We provide a detailed asymptotic study of gradient flow trajectories and their implicit optimization bias when minimizing the exponential loss over diagonal linear networks. This is the simplest model displaying a transition between kernel and non-ke rnel (rich or active) regimes. We show how the transition is controlled by the relationship between the initialization scale and how accurately we minimize the training loss. Our results indicate that some limit behaviors of gradient descent only kick in at ridiculous training accuracies (well beyond $10^{-100}$). Moreover, the implicit bias at reasonable initialization scales and training accuracies is more complex and not captured by these limits.
State of the art deep learning models have made steady progress in the fields of computer vision and natural language processing, at the expense of growing model sizes and computational complexity. Deploying these models on low power and mobile devic es poses a challenge due to their limited compute capabilities and strict energy budgets. One solution that has generated significant research interest is deploying highly quantized models that operate on low precision inputs and weights less than eight bits, trading off accuracy for performance. These models have a significantly reduced memory footprint (up to 32x reduction) and can replace multiply-accumulates with bitwise operations during compute intensive convolution and fully connected layers. Most deep learning frameworks rely on highly engineered linear algebra libraries such as ATLAS or Intels MKL to implement efficient deep learning operators. To date, none of the popular deep learning directly support low precision operators, partly due to a lack of optimized low precision libraries. In this paper we introduce a work flow to quickly generate high performance low precision deep learning operators for arbitrary precision that target multiple CPU architectures and include optimizations such as memory tiling and vectorization. We present an extensive case study on low power ARM Cortex-A53 CPU, and show how we can generate 1-bit, 2-bit convolutions with speedups up to 16x over an optimized 16-bit integer baseline and 2.3x better than handwritten implementations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا