ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of substrate temperature on magnetic properties of plasma-assisted molecular beam epitaxy grown (Ga,Mn)N

68   0   0.0 ( 0 )
 نشر من قبل Katarzyna Gas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A range of high quality Ga1-xMnxN layers have been grown by molecular beam epitaxy with manganese concentration 0.2 < x < 10%, having the x value tuned by changing the growth temperature (Tg) between 700 and 590 {deg}C, respectively. We present a systematic structural and microstructure characterization by atomic force microscopy, secondary ion mass spectrometry, transmission electron microscopy, powder-like and high resolution X-ray diffraction, which do not reveal any crystallographic phase separation, clusters or nanocrystals, even at the lowest Tg. Our synchrotron based X-ray absorption near-edge spectroscopy supported by density functional theory modelling and superconducting quantum interference device magnetometry results point to the predominantly +3 configuration of Mn in GaN and thus the ferromagnetic phase has been observed in layers with x > 5% at 3 < T < 10 K. The main detrimental effect of Tg reduced to 590 {deg}C is formation of flat hillocks, which increase the surface root-mean-square roughness, but only to mere 3.3 nm. Fine substrates surface temperature mapping has shown that the magnitudes of both x and Curie temperature (Tc) correlate with local Tg. It has been found that a typical 10 {deg}C variation of Tg across 1 inch substrate can lead to 40% dispersion of Tc. The established here strong sensitivity of Tc on Tg turns magnetic measurements into a very efficient tool providing additional information on local Tg, an indispensable piece of information for growth mastering of ternary compounds in which metal species differ in almost every aspect of their growth related parameters determining the kinetics of the growth. We also show that the precise determination of Tc by two different methods, each sensitive to different moments of Tc distribution, may serve as a tool for quantification of spin homogeneity within the material.

قيم البحث

اقرأ أيضاً

We present an experimental investigation of the magnetic, electrical and structural properties of Ga0.94Mn0.06As1-yPy layers grown by molecular beam epitaxy on GaAs substrates for y less than or equal to 0.3. X-ray diffraction measurements reveal tha t the layers are under tensile strain which gives rise to a magnetic easy axis perpendicular to the plane of the layers. The strength of the magnetic anisotropy and the coercive field increase as the phosphorous concentration is increased. The resistivity of all samples shows metallic behaviour with the resistivity increasing as y increases. These materials will be useful for studies of micromagnetic phenomena requiring metallic ferromagnetic material with perpendicular magnetic anisotropy.
GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.
90 - S.Sonoda 2001
Wurtzite (Ga,Mn)N films showing ferromagnetic behaviour at room temperature were successfully grown on sapphire(0001) substrates by molecular beam epitaxy using ammonia as nitrogen source. Magnetization measurements were carried out by a superconduct ing quantum interference device at the temperatures between 1.8K and 300K with magnetic field applied parallel to the film plane up to 7T. The magnetic-field dependence of magnetization of a (Ga,Mn)N film at 300K were ferromagnetic, while a GaN film showed Pauli paramagnetism like behaviour. The Curie temperatures of a (Ga,Mn)N film was estimated as 940K.
Smooth interfaces and surfaces are beneficial for most (opto)electronic devices based on thin films and their heterostructures. For example, smoother interfaces in (010) beta-Ga2O3/(AlxGa1-x)2O3 heterostructures, whose roughness is ruled by that of t he Ga2O3 layer, can enable higher mobility 2DEGs by reducing interface roughness scattering. To this end we experimentally prove that a substrate offcut along the [001] direction allows to obtain smooth beta-Ga2O3 layers in (010)-homoepitaxy under metal-rich conditions. Applying In-mediated metal-exchange catalysis (MEXCAT) in molecular beam epitaxy at high substrate temperatures (Tg = 900 {deg}C) we compare the morphology of layers grown on (010)-oriented substrates with different unintentional offcuts. The layer roughness is generally ruled by (i) (110) and (-110)-facets visible as elongated features along the [001] direction (rms < 0.5 nm), and (ii) trenches (5-10 nm deep) orthogonal to [001]. We show that an unintentional substrate offcut of only 0.1{deg} almost oriented along the [001] direction suppresses these trenches resulting in a smooth morphology with a roughness exclusively determined by the facets, i.e., rms 0.2 nm. Since we found the facet-and-trench morphology in layers grown by MBE with and without MEXCAT, we propose that the general growth mechanism for (010)-homoepitaxy is ruled by island growth whose coalescence results in the formation of the trenches. The presence of a substrate offcut in the [001] direction can allow for step-flow growth or island nucleation at the step edges, which prevents the formation of trenches. Moreover, we give experimental evidence for a decreasing surface diffusion length or increasing nucleation density with decreasing metal-to-oxygen flux ratio. Based on our results we can rule-out step bunching as cause of the trench formation as well as a surfactant-effect of indium during MEXCAT.
We have investigated the growth of BaTiO3 thin films deposited on pure and 1% Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were invest igated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO3 layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {guillemotright}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO3 layers, especially in view of their integration in devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا