ﻻ يوجد ملخص باللغة العربية
In the search for alternative plasmonic materials SrMoO3 has recently been identified as possessing a number of desirable optical properties. Owing to the requirement for many plasmonic devices to operate at elevated temperatures however, it is essential to characterize the degradation of these properties upon heating. Here, SrMoO3 thin films are annealed in air at temperatures ranging from 75 - 500{deg} C. Characterizations by AFM, XRD, and spectroscopic ellipsometry after each anneal identify a loss of metallic behaviour after annealing at 500{deg} C, together with the underlying mechanism. Moreover, it is shown that by annealing the films in nitrogen following deposition, an additional crystalline phase of SrMoO4 is induced at the film surface, which suppresses oxidation at elevated temperatures.
Strontium molybdate (SrMoO3) thin films are shown to exhibit plasmonic behaviour with a zero crossover wavelength of the real part of the dielectric permittivity tunable between 600 and 950 nm (2.05 eV and 1.31 eV). The films are grown epitaxially on
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using PLD technique. The angle dependent magnetic hysteresis, remanent coercivity and temperature dependent coer
The Landau theory of phase transitions of Ba0.8Sr0.2TiO3 thin film under external electric field applied in the planar geometry is developed. The interfacial van-der-Waals field Ez=1.1x10^8 V/m oriented normal to the film-substrate interface was intr
We report ultrafast surface pump and interface probe experiments on photoexcited carrier transport across single crystal bismuth films on sapphire. The film thickness is sufficient to separate carrier dynamics from lattice heating and strain, allowin
We investigated the ferroelectric properties of strontium titanate (STO) thin films deposited on SrTiO3 (001) substrate with SrRuO3 electrodes. The STO layer was grown coherently on the SrTiO3 substrate without in-plane lattice relaxation, but its ou