ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of magnetization reversal in oriented Strontium Ferrite thin films

246   0   0.0 ( 0 )
 نشر من قبل Debangsu Roy
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using PLD technique. The angle dependent magnetic hysteresis, remanent coercivity and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.



قيم البحث

اقرأ أيضاً

298 - W.-T. Lee 2001
We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of its lateral domains. This technique is applied to elucidate the mechanism of the magnetization reversal of an exchange-biased Co/CoO bilayer. The reversal process above the blocking temperature is governed by uniaxial domain switching, while below the blocking temperature the reversal of magnetization for the trained sample takes place with substantial domain rotation.
Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth free composition. One of its applications is its association with a piezoelectric material to form a extrinsic multiferroic composite as an alternative to the rare room temperature intrinsic multiferroics such as BiFeO$_3$. This study focuses on thin Fe$_{0.81}$Ga$_{0.19}$ films of thickness 5, 10, 20 and 60 nm deposited by sputtering onto glass substrates. Magnetization reversal study reveals a well-defined symmetry with two principal directions independent of the thickness. The magnetic signature of this magnetic anisotropy decreases with increasing FeGa thickness due to an increase of the non-preferential polycrystalline arrangement, as revealed by transmission electron microscopy (TEM) observations. Thus when magnetic field is applied along these specific directions, magnetization reversal is mainly coherent for the thinnest sample as seen from the transverse magnetization cycles. Magnetostriction coefficient reaches 20 ppm for the 5 nm film and decreases for thicker samples, where polycrystalline part with non-preferential orientation prevails.
139 - T. Makino , F. Liu , T. Yamasaki 2012
All-optical pump-probe detection of magnetization precession has been performed for ferromagnetic EuO thin films at 10 K. We demonstrate that the circularly-polarized light can be used to control the magnetization precession on an ultrafast time scal e. This takes place within the 100 fs duration of a single laser pulse, through combined contribution from two nonthermal photomagnetic effects, i.e., enhancement of the magnetization and an inverse Faraday effect. From the magnetic field dependences of the frequency and the Gilbert damping parameter, the intrinsic Gilbert damping coefficient is evaluated to be {alpha} approx 3times10^-3.
Yttrium Iron Garnet (YIG) and bismuth (Bi) substituted YIG (Bi0.1Y2.9Fe5O12, BYG) films are grown in-situ on single crystalline Gadolinium Gallium Garnet (GGG) substrates [with (100) and (111) orientations] using pulsed laser deposition (PLD) techniq ue. As the orientation of the Bi-YIG film changes from (100) to (111), the lattice constant is enhanced from 12.384 {AA} to 12.401 {AA} due to orientation dependent distribution of Bi3+ ions at dodecahedral sites in the lattice cell. Atomic force microscopy (AFM) images show smooth film surfaces with roughness 0.308 nm in Bi-YIG (111). The change in substrate orientation leads to the modification of Gilbert damping which, in turn, gives rise to the enhancement of ferromagnetic resonance (FMR) line width. The best values of Gilbert damping are found to be (0.54)*10-4, for YIG (100) and (6.27)*10-4, for Bi-YIG (111) oriented films. Angle variation measurements of the Hr are also performed, that shows a four-fold symmetry for the resonance field in the (100) grown film. In addition, the value of effective magnetization (4{pi}Meff) and extrinsic linewidth ({Delta}H0) are observed to be dependent on substrate orientation. Hence PLD growth can assist single-crystalline YIG and BYG films with a perfect interface that can be used for spintronics and related device applications.
Spin Seebeck effect (SSE) has been investigated in thin films of two Y-hexagonal ferrites Ba$_2$Zn$_{2}$Fe$_{12}$O$_{22}$ (Zn2Y) and Ba$_2$Co$_{2}$Fe$_{12}$O$_{22}$ (Co2Y) deposited by a spin-coating method on SrTiO$_3$(111) substrate. The selected h exagonal ferrites are both ferrimagnetic with similar magnetic moments at room temperature and both exhibit easy magnetization plane normal to $c$-axis. Despite that, SSE signal was only observed for Zn2Y, whereas no significant SSE signal was detected for Co2Y. We tentatively explain this different behavior by a presence of two different magnetic ions in Co2Y, whose random distribution over octahedral sites interferes the long range ordering and enhances the Gilbert damping constant. The temperature dependence of SSE for Zn2Y was measured and analyzed with regard to the heat flux and temperature gradient relevant to the SSE signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا