ﻻ يوجد ملخص باللغة العربية
In this paper, we study the nonequilibrium dynamics of the Bose-Hubbard model with the nearest-neighbor repulsion by using time-dependent Gutzwiller (GW) methods. In particular, we vary the hopping parameters in the Hamiltonian as a function of time, and investigate the dynamics of the system from the density wave (DW) to the superfluid (SF) crossing a first-order phase transition and vice-versa. From the DW to SF, we find scaling laws for the correlation length and vortex density with respect to the quench time. This is a reminiscence of the Kibble-Zurek scaling for continuous phase transitions and contradicts the common expectation. We give a possible explanation for this observation. On the other hand from the SF to DW, the system evolution depends on the initial SF state. When the initial state is the ground-state obtained by the static GW methods, a coexisting state of the SF and DW domains forms after passing through the critical point. Coherence of the SF order parameter is lost as the system evolves. This is a phenomenon similar to the glass transition in classical systems. When the state starts from the SF with small local phase fluctuations, the system obtains a large-size DW-domain structure with thin domain walls.
In this paper, we study the dynamics of the Bose-Hubbard model with the nearest-neighbor repulsion by using time-dependent Gutzwiller methods. Near the unit filling, the phase diagram of the model contains density wave (DW), supersolid (SS) and super
We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the emphasis on the determination of the groun
Recently, it has become apparent that, when the interactions between polar molecules in optical lattices becomes strong, the conventional description using the extended Hubbard model has to be modified by additional terms, in particular a density-dep
The superfluid to Mott insulator transition and the superradiant transition are textbook examples for quantum phase transition and coherent quantum optics, respectively. Recent experiments in ETH and Hamburg succeeded in loading degenerate bosonic at
We study a continuum model of the weakly interacting Bose gas in the presence of an external field with minima forming a triangular lattice. The second lowest band of the single-particle spectrum ($p$-band) has three minima at non-zero momenta. We co