ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical structure factor of the $J_1-J_2$ Heisenberg model in one dimension: the variational Monte Carlo approach

130   0   0.0 ( 0 )
 نشر من قبل Francesco Ferrari
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamical spin structure factor is computed within a variational framework to study the one-dimensional $J_1-J_2$ Heisenberg model. Starting from Gutzwiller-projected fermionic wave functions, the low-energy spectrum is constructed from two-spinon excitations. The direct comparison with Lanczos calculations on small clusters demonstrates the excellent description of both gapless and gapped (dimerized) phases, also including incommensurate structures for $J_2/J_1>0.5$. Calculations on large clusters show how the intensity evolves when increasing the frustrating ratio and give an unprecedented accurate characterization of the dynamical properties of (non-integrable) frustrated spin models.



قيم البحث

اقرأ أيضاً

We study the quantum phase diagram and excitation spectrum of the frustrated $J_1$-$J_2$ spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying {it relevant} degrees of freedom, is deve loped. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the {it symmetric plaquette} covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) {it plaquette crystal}, connected with the neighboring Neel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Neel and columnar phases. Our results suggest that the quantum phase transition between Neel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$ enters a long-range incommensurate, helical state with an ordering wave vector ${bf{k}} = (0.384, pm 0.384, 0)$ that locks-in to a commensurate ${bf{k}} = (1/3, pm 1/3, 0)$ phase under the application of a magnetic field. The spiral magnetic ground state of LiYbO$_2$ can be understood in the framework of a Heisenberg $J_1-J_2$ Hamiltonian on a stretched diamond lattice, where the propagation vector of the spiral is uniquely determined by the ratio of $J_2/|J_1|$. The pure Heisenberg model, however, fails to account for the relative phasing between the Yb moments on the two sites of the bipartite lattice, and this detail as well as the presence of an intermediate, partially disordered, magnetic state below 1 K suggests interactions beyond the classical Heisenberg description of this material.
The one-dimensional spin-S $J_1-J_2$ XY model is studied within the bosonization approach. Around the two limits ($J_2/J_1 ll 1,J_2/J_1 gg 1$) where a field theoretical analysis can be derived, we discuss the phases as well as the different phase tra nsitions that occur in the model. In particular, it is found that the chiral critical spin nematic phase, first discovered by Nersesyan et al. (Phys. Rev. Lett. {bf 81}, 910 (1998)) for $S=1/2$, exists in the general spin-S case. The nature of the effective field theory that describes the transition between this chiral critical phase and a chiral gapped phase is also determined.
The large $J_2$ limit of the square-lattice $J_1-J_2$ Heisenberg antiferromagnet is a classic example of order by disorder where quantum fluctuations select a collinear ground state. Here, we use series expansion methods and a meanfield spin-wave the ory to study the excitation spectra in this phase and look for a finite temperature Ising-like transition, corresponding to a broken symmetry of the square-lattice, as first proposed by Chandra et al. (Phys. Rev. Lett. 64, 88 (1990)). We find that the spectra reveal the symmetries of the ordered phase. However, we do not find any evidence for a finite temperature phase transition. Based on an effective field theory we argue that the Ising-like transition occurs only at zero temperature.
93 - Shou-Shu Gong , Wei Zhu , 2015
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and sec ond-neighbor ($J_2$) interactions ($0.0 leq J_2/J_1 leq 0.5$) by means of density matrix renormalization group (DMRG). In the parameter regime $J_2/J_1 lesssim 0.27$, the system sustains a N{e}el antiferromagnetic phase. At the large $J_2$ side $J_2/J_1 gtrsim 0.32$, a stripe antiferromagnetic phase is found. Between the two magnetic ordered phases $0.27 lesssim J_2/J_1 lesssim 0.32$, we find a textit{non-magnetic} intermediate region with a plaquette valence-bond order. Although our calculations are limited within $6$ unit-cell width on cylinder, we present evidence that this plaquette state could be a strong candidate for this non-magnetic region in the thermodynamic limit. We also briefly discuss the nature of the quantum phase transitions in the system. We gain further insight of the non-magnetic phases in the spin-$1$ system by comparing its phase diagram with the spin-$1/2$ system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا