ﻻ يوجد ملخص باللغة العربية
We study the quantum phase diagram and excitation spectrum of the frustrated $J_1$-$J_2$ spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying {it relevant} degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the {it symmetric plaquette} covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) {it plaquette crystal}, connected with the neighboring Neel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Neel and columnar phases. Our results suggest that the quantum phase transition between Neel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and sec
The spin-1/2 $J_1$-$J_2$ Heisenberg model on square lattices are investigated via the finite projected entangled pair states (PEPS) method. Using the recently developed gradient optimization method combining with Monte Carlo sampling techniques, we a
We assess the ground-state phase diagram of the $J_1$-$J_2$ Heisenberg model on the kagome lattice by employing Gutzwiller-projected fermionic wave functions. Within this framework, different states can be represented, defined by distinct unprojected
We investigate the ground state nature of the transverse field Ising model on the $J_1-J_2$ square lattice at the highly frustrated point $J_2/J_1=0.5$. At zero field, the model has an exponentially large degenerate classical ground state, which can