ﻻ يوجد ملخص باللغة العربية
We derive lower bounds for the variance of the difference of energies between incongruent ground states, i.e., states with edge overlaps strictly less than one, of the Edwards-Anderson model on ${mathbb Z}^d$. The bounds highlight a relation between the existence of incongruent ground states and the absence of edge disorder chaos. In particular, it suggests that the presence of disorder chaos is necessary for the variance to be of order less than the volume. In addition, a relation is established between the scale of disorder chaos and the size of critical droplets. The results imply a long-conjectured relation between the droplet theory of Fisher and Huse and the absence of incongruence.
We present a detailed proof of a previously announced result (C.M. Newman and D.L. Stein, Phys. Rev. Lett. v. 84, pp. 3966--3969 (2000)) supporting the absence of multiple (incongruent) ground state pairs for 2D Edwards-Anderson spin glasses (with ze
A two-type version of the frog model on $mathbb{Z}^d$ is formulated, where active type $i$ particles move according to lazy random walks with probability $p_i$ of jumping in each time step ($i=1,2$). Each site is independently assigned a random numbe
We discuss temperature chaos in mean field and realistic 3D spin glasses. Our numerical simulations show no trace of a temperature chaotic behavior for the system sizes considered. We discuss the experimental and theoretical implications of these findings.
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t
Mean-field spin glasses are families of random energy functions (Hamiltonians) on high-dimensional product spaces. In this paper we consider the case of Ising mixed $p$-spin models, namely Hamiltonians $H_N:Sigma_Nto {mathbb R}$ on the Hamming hyperc