ﻻ يوجد ملخص باللغة العربية
One of the pronounced characteristics of gravity, distinct from other interactions, is that there are no local observables which are independent of the choice of the spacetime coordinates. This property acquires crucial importance in the quantum domain in that the structure of the Hilbert space pertinent to different observers can be drastically different. Such intriguing phenomena as the Hawking radiation and the Unruh effect are all rooted in this feature. As in these examples, the quantum effect due to such observer-dependence is most conspicuous in the presence of an event horizon and there are still many questions to be clarified in such a situation. In this paper, we perform a comprehensive and explicit study of the observer dependence of the quantum Hilbert space of a massless scalar field in the vicinity of the horizon of the Schwarzschild black holes in four dimensions, both in the eternal (two-sided) case and in the physical (one-sided) case created by collapsing matter. Specifically, we compare and relate the Hilbert spaces of the three types of observers, namely (i) the freely falling observer, (ii) the observer who stays at a fixed proper distance outside of the horizon and (iii) the natural observer inside of the horizon analytically continued from outside. The concrete results we obtain have a number of important implications on black hole complementarity pertinent to the quantum equivalence principle and the related firewall phenomenon, on the number of degrees of freedom seen by each type of observer, and on the thermal-type spectrum of particles realized in a pure state.
We examine the late-time evolution of a qubit (or Unruh-De Witt detector) that hovers very near to the event horizon of a Schwarzschild black hole, while interacting with a free quantum scalar field. The calculation is carried out perturbatively in t
We investigate the asymptotic supersymmetry group of the near horizon region of the BMPV black holes, which are the rotating BPS black holes in five dimensions. When considering only bosonic fluctuations, we show that there exist consistent boundary
Collisions of particles in black holes ergospheres may result in an arbitrarily large center of mass energy. This led recently to the suggestion (Banados et al., 2009) that black holes can act as ultimate particle accelerators. If the energy of an ou
We show that linear scalar waves are bounded and continuous up to the Cauchy horizon of Reissner-Nordstrom-de Sitter and Kerr-de Sitter spacetimes, and in fact decay exponentially fast to a constant along the Cauchy horizon. We obtain our results by
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild-AdS