ﻻ يوجد ملخص باللغة العربية
We show that linear scalar waves are bounded and continuous up to the Cauchy horizon of Reissner-Nordstrom-de Sitter and Kerr-de Sitter spacetimes, and in fact decay exponentially fast to a constant along the Cauchy horizon. We obtain our results by modifying the spacetime beyond the Cauchy horizon in a suitable manner, which puts the wave equation into a framework in which a number of standard as well as more recent microlocal regularity and scattering theory results apply. In particular, the conormal regularity of waves at the Cauchy horizon - which yields the boundedness statement - is a consequence of radial point estimates, which are microlocal manifestations of the blue-shift and red-shift effects.
Collisions of particles in black holes ergospheres may result in an arbitrarily large center of mass energy. This led recently to the suggestion (Banados et al., 2009) that black holes can act as ultimate particle accelerators. If the energy of an ou
We prove the linear stability of slowly rotating Kerr black holes as solutions of the Einstein vacuum equation: linearized perturbations of a Kerr metric decay at an inverse polynomial rate to a linearized Kerr metric plus a pure gauge term. We work
We examine the late-time evolution of a qubit (or Unruh-De Witt detector) that hovers very near to the event horizon of a Schwarzschild black hole, while interacting with a free quantum scalar field. The calculation is carried out perturbatively in t
One of the pronounced characteristics of gravity, distinct from other interactions, is that there are no local observables which are independent of the choice of the spacetime coordinates. This property acquires crucial importance in the quantum doma
We investigate the asymptotic supersymmetry group of the near horizon region of the BMPV black holes, which are the rotating BPS black holes in five dimensions. When considering only bosonic fluctuations, we show that there exist consistent boundary