ﻻ يوجد ملخص باللغة العربية
The magnetic field dependence of the superconductivity in nanocrystalline boron doped diamond thin films is reported. Evidence of a glass state in the phase diagram is presented, as demonstrated by electrical resistance and magnetic relaxation measurements. The position of the phase boundary in the H-T plane is determined from resistance data by detailed fitting to zero-dimensional fluctuation conductivity theory. This allows determination of the boundary between resistive and non-resistive behavior to be made with greater precision than the standard ad hoc onset/midpoint/offset criterion.
We present resistance versus temperature data for a series of boron-doped nanocrystalline diamond films whose grain size is varied by changing the film thickness. Upon extracting the fluctuation conductivity near to the critical temperature we observ
Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc = 7.2K. Here we report the measured complex surface impedance of Boron-doped diamond films in the microwave frequency range usin
We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond
We report measurements of the specific heat, Hall effect, upper critical field and resistivity on bulk, B-doped diamond prepared by reacting amorphous B and graphite under high-pressure/high-temperature conditions. These experiments establish unambig
We report on a detailed study of the optical response and $T_c-rho$ phase diagram ($T_c$ being the superconducting critical temperature and $rho$ the normal state resistivity of the film) of granular aluminum, combining transport measurements and a h