ترغب بنشر مسار تعليمي؟ اضغط هنا

Two more, bright, z > 6 quasars from VST ATLAS and WISE

64   0   0.0 ( 0 )
 نشر من قبل Tom Shanks
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Chehade




اسأل ChatGPT حول البحث

Recently, Carnall et al. discovered two bright high redshift quasars using the combination of the VST ATLAS and WISE surveys. The technique involved using the 3-D colour plane i-z:z-W1:W1-W2 with the WISE W1 (3.4 micron) and W2 (4.5 micron) bands taking the place of the usual NIR J band to help decrease stellar dwarf contamination. Here we report on our continued search for 5.7<z<6.4 quasars over an ~2x larger area of ~3577 sq. deg. of the Southern Hemisphere. We have found two further z>6 quasars, VST-ATLAS J158.6938-14.4211 at z=6.07 and J332.8017-32.1036 at z=6.32 with magnitudes of z_AB=19.4 and 19.7 mag respectively. J158.6938-14.4211 was confirmed by Keck LRIS observations and J332.8017-32.1036 was confirmed by ESO NTT EFOSC-2 observations. Here we present VLT X-shooter Visible and NIR spectra for the four ATLAS quasars. We have further independently rediscovered two z>5.7 quasars previously found by the VIKING/KiDS and PanSTARRS surveys. This means that in ATLAS we have now discovered a total of six quasars in our target 5.7<z<6.4 redshift range. Making approximate corrections for incompleteness, we find that our quasar space density agrees with the SDSS results of Jiang et al. at M_1450A~-27mag. Preliminary virial mass estimates based on the CIV and MIII emission lines give black hole masses in the range M_BH~1-6x10e9 M_solar for the four ATLAS quasars.

قيم البحث

اقرأ أيضاً

We present the discovery of two z > 6 quasars, selected as i band dropouts in the VST ATLAS survey. Our first quasar has redshift, z = 6.31 pm 0.03, z band magnitude, z_AB = 19.63 pm 0.08 and rest frame 1450A absolute magnitude, M_1450 = -27.8 pm 0.2 , making it the joint second most luminous quasar known at z > 6. The second quasar has z = 6.02 pm 0.03, z_AB = 19.54 pm 0.08 and M_1450 = -27.0 pm 0.1. We also recover a z = 5.86 quasar discovered by Venemans et al. (2015, in prep.). To select our quasars we use a new 3D colour space, combining the ATLAS optical colours with mid-infra-red data from the Wide-field Infrared Survey Explorer (WISE). We use i_AB - z_AB colour to exclude main sequence stars, galaxies and lower redshift quasars, W1 - W2 to exclude L dwarfs and z_AB - W2 to exclude T dwarfs. A restrictive set of colour cuts returns only our three high redshift quasars and no contaminants, albeit with a sample completeness of ~50%. We discuss how our 3D colour space can be used to reject the majority of contaminants from samples of bright 5.7 < z < 6.3 quasars, replacing follow-up near-infra-red photometry, whilst retaining high completeness.
High-redshift quasars are currently the only probes of the growth of supermassive black holes and potential tracers of structure evolution at early cosmic time. Here we present our candidate selection criteria from the Panoramic Survey Telescope & Ra pid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7<z<6.2. With this strategy we discovered eight new 5.7<z<6.0 quasars, increasing the number of known quasars at z>5.7 by more than 10%. We additionally recovered 18 previously known quasars. The eight quasars presented here span a large range of luminosities (-27.3 < M_{1450} < -25.4; 19.6 < z_ps1 < 21.2) and are remarkably heterogeneous in their spectral features: half of them show bright emission lines whereas the other half show a weak or no Ly$alpha$ emission line (25% with rest-frame equivalent width of the Ly$alpha$ + Nv line lower than 15{AA}). We find a larger fraction of weak-line emission quasars than in lower redshift studies. This may imply that the weak-line quasar population at the highest redshifts could be more abundant than previously thought. However, larger samples of quasars are needed to increase the statistical significance of this finding.
We present a search for bright $zsim5$ quasars using imaging data from SkyMapper Southern Survey, Pan-STARRS1 and the Wide-field Infrared Survey Explorer (WISE). We select two sets of candidates using WISE with optical bands from SkyMapper and altern atively from Pan-STARRS1, limited to a magnitude of $i<18.2$. We follow up several candidates with spectroscopy and find that the four candidates common to both lists are quasars, while others turned out to be cool stars. Two of the four quasars, SMSS J013539.27-212628.4 at $z=4.86$ and SMSS J093032.58-221207.7 at $z=4.94$, are new discoveries and ranked among the dozen brightest known $z>4.5$ QSOs in the $i$-band.
We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with z$_{AB}$ < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria f rom 1533 deg$^{2}$ using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based $chi^{2}$-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z $sim$ 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 10$^6$ - 10$^7$ years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has J$_{AB}$ = 19.75 is the second most luminous quasar known with z > 6.5.
163 - Jonatan Selsing 2015
Quasi-stellar object (QSO) spectral templates are important both to QSO physics and for investigations that use QSOs as probes of intervening gas and dust. However, combinations of various QSO samples obtained at different times and with different in struments so as to expand a composite and to cover a wider rest frame wavelength region may create systematic effects, and the contribution from QSO hosts may contaminate the composite. We have constructed a composite spectrum from luminous blue QSOs at 1 < z < 2.1 selected from the Sloan Digital Sky Survey (SDSS). The observations with X-shooter simultaneously cover ultraviolet (UV) to near- infrared (NIR) light, which ensures that the composite spectrum covers the full rest-frame range from Ly$beta$ to 11350 $AA$ without any significant host contamination. Assuming a power-law continuum for the composite we find a spectral slope of $alpha_lambda$ = 1.70+/-0.01, which is steeper than previously found in the literature. We attribute the differences to our broader spectral wavelength coverage, which allows us to effectively avoid fitting any regions that are affected either by strong QSO emissions lines (e.g., Balmer lines and complex [Fe II] blends) or by intrinsic host galaxy emission. Finally, we demonstrate the application of the QSO composite spectrum for evaluating the reddening in other QSOs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا