ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of eight z ~ 6 quasars from Pan-STARRS1

151   0   0.0 ( 0 )
 نشر من قبل Eduardo Ba\\~nados
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-redshift quasars are currently the only probes of the growth of supermassive black holes and potential tracers of structure evolution at early cosmic time. Here we present our candidate selection criteria from the Panoramic Survey Telescope & Rapid Response System 1 and follow-up strategy to discover quasars in the redshift range 5.7<z<6.2. With this strategy we discovered eight new 5.7<z<6.0 quasars, increasing the number of known quasars at z>5.7 by more than 10%. We additionally recovered 18 previously known quasars. The eight quasars presented here span a large range of luminosities (-27.3 < M_{1450} < -25.4; 19.6 < z_ps1 < 21.2) and are remarkably heterogeneous in their spectral features: half of them show bright emission lines whereas the other half show a weak or no Ly$alpha$ emission line (25% with rest-frame equivalent width of the Ly$alpha$ + Nv line lower than 15{AA}). We find a larger fraction of weak-line emission quasars than in lower redshift studies. This may imply that the weak-line quasar population at the highest redshifts could be more abundant than previously thought. However, larger samples of quasars are needed to increase the statistical significance of this finding.



قيم البحث

اقرأ أيضاً

145 - Linhua Jiang 2015
We present the discovery of eight quasars at z~6 identified in the Sloan Digital Sky Survey (SDSS) overlap regions. Individual SDSS imaging runs have some overlap with each other, leading to repeat observations over an area spanning >4000 deg^2 (more than 1/4 of the total footprint). These overlap regions provide a unique dataset that allows us to select high-redshift quasars more than 0.5 mag fainter in the z band than those found with the SDSS single-epoch data. Our quasar candidates were first selected as i-band dropout objects in the SDSS imaging database. We then carried out a series of follow-up observations in the optical and near-IR to improve photometry, remove contaminants, and identify quasars. The eight quasars reported here were discovered in a pilot study utilizing the overlap regions at high galactic latitude (|b|>30 deg). These quasars span a redshift range of 5.86<z<6.06 and a flux range of 19.3<z_AB<20.6 mag. Five of them are fainter than z_AB=20 mag, the typical magnitude limit of z~6 quasars used for the SDSS single-epoch images. In addition, we recover eight previously known quasars at z~6 that are located in the overlap regions. These results validate our procedure for selecting quasar candidates from the overlap regions and confirming them with follow-up observations, and provide guidance to a future systematic survey over all SDSS imaging regions with repeat observations.
Luminous distant quasars are unique probes of the high redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral Hydrogen in the IGM makes quasars beyond a redshift of z ~6.5 very faint in the optical $z$-band, thus locating quasars at higher redshifts require large surveys that are sensitive above 1 micron. We report the discovery of three new z>6.5 quasars, corresponding to an age of the universe of <850 Myr, selected as z-band dropouts in the Pan-STARRS1 survey. This increases the number of known z>6.5 quasars from 4 to 7. The quasars have redshifts of z=6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078+03.0498 with M_1450=-27.4. We obtained near-infrared spectroscopy for the quasars and from the MgII line we estimate that the central black holes have masses between 5x10^8 and 4x10^9 M_sun, and are accreting close to the Eddington limit (L_Bol/L_Edd=0.13-1.2). We investigate the ionized regions around the quasars and find near zone radii of R_NZ=1.5-5.2 proper Mpc, confirming the trend of decreasing near zone sizes with increasing redshift found for quasars at 5.7<z<6.4. By combining R_NZ of the PS1 quasars with those of 5.7<z<7.1 quasars in the literature, we derive a luminosity corrected redshift evolution of R_NZ,corrected=(7.2+/-0.2)-(6.1+/-0.7)x(z-6) Mpc. However, the large spread in R_NZ in the new quasars implies a wide range in quasar ages and/or a large variation in the neutral Hydrogen fraction along different lines of sight.
We present the discovery of two ultra-luminous supernovae (SNe) at z ~ 0.9 with the Pan-STARRS1 Medium-Deep Survey. These SNe, PS1-10ky and PS1-10awh, are amongst the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap a nd SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_bol ~ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time-series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10^51 erg. We find photospheric velocities of 12,000-19,000 km/s with no evidence for deceleration measured across ~3 rest-frame weeks around light-curve peak, consistent with the expansion of an optically-thick massive shell of material. We show that, consistent with findings for other ultra-luminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
We present a search for bright $zsim5$ quasars using imaging data from SkyMapper Southern Survey, Pan-STARRS1 and the Wide-field Infrared Survey Explorer (WISE). We select two sets of candidates using WISE with optical bands from SkyMapper and altern atively from Pan-STARRS1, limited to a magnitude of $i<18.2$. We follow up several candidates with spectroscopy and find that the four candidates common to both lists are quasars, while others turned out to be cool stars. Two of the four quasars, SMSS J013539.27-212628.4 at $z=4.86$ and SMSS J093032.58-221207.7 at $z=4.94$, are new discoveries and ranked among the dozen brightest known $z>4.5$ QSOs in the $i$-band.
Luminous quasars at z>5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare and therefore wide-field surveys are required to identify them and multiwavelength data are needed to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for z~6 quasars presented in Banados et al. (2014) using the Pan-STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range 5.6<z<6.7 that satisfy our selection criteria. Seventy-seven of these quasars have been discovered with PS1, and 63 of them are newly identified in this paper. We present composite spectra of the PS1 distant quasar sample. This sample spans a factor of ~20 in luminosity and shows a variety of emission line properties. The number of quasars at z>5.6 presented in this work almost double the quasars previously known at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا