ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrogen Bond Networks Near Supported Lipid Bilayers from Vibrational Sum Frequency Generation Experiments and Atomistic Simulations

57   0   0.0 ( 0 )
 نشر من قبل Franz Geiger
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report vibrational sum frequency generation spectra from supported lipid bilayers in which the OH and the CH stretching signals are probed at different salt concentrations. Atomistic simulations show a negligible impact of salt on the OH stretching spectra, indicating the observed SFG intensity changes are due to chi(3) and potential dependent contributions. These are further analyzed in the contact of exact-zero reference states. Further experiments and simulations identify specific hydrogen bonding interactions between interfacial water molecules at the PC head group of the zwitterionic DMPC lipids at 3200 wavenumbers.

قيم البحث

اقرأ أيضاً

The membrane curvature of cells and intracellular compartments continuously adapts to enable cells to perform vital functions, from cell division to signal trafficking. Understanding how membrane geometry affects these processes in vivo is challengin g because of the membrane complexity as well as the short time and small length scales involved. By contrast, in vitro model membranes with engineered curvature provide a versatile platform for this investigation and applications to biosensing and biocomputing. However, a general route to the fabrication of lipid membranes with prescribed curvature and high spatial resolution is still missing. Here, we present a strategy that overcomes these challenges and achieve lipid membranes with designed shape by combining 3D micro-printing and replica-molding lithography to create scaffolds with virtually any geometry and high spatial resolution. The resulting supported lipid membranes are homogeneous, fluid, and can form chemically distinct lipid domains. These features are essential for understanding curvature-dependent cellular processes and developing programmable bio-interfaces for living cells and nanostructures.
We report on atomistic simulations of DPPC lipid monolayers using the CHARMM36 lipid force field and four-point OPC water model. The entire two-phase region where domains of the `liquid-condensed (LC) phase coexist with domains of the `liquid-expande d (LE) phase has been explored. The simulations are long enough that the complete phase-transition stage, with two domains coexisting in the monolayer, is reached in all cases. Also, system sizes used are larger than in previous works. As expected, domains of the minority phase are elongated, emphasizing the importance of anisotropic van der Waals and/or electrostatic dipolar interactions in the monolayer plane. The molecular structure is quantified in terms of distribution functions for the hydrocarbon chains and the PN dipoles. In contrast to previous work, where average distributions are calculated, distributions are here extracted for each of the coexisting phases by first identifying lipid molecules that belong to either LC or LE regions. The three-dimensional distributions show that the average tilt angle of the chains with respect to the normal outward direction is $(39.0pm 0.1)^{circ}$ in the LC phase. % and $(48.1pm 0.5)^{circ}$ in the LC phase. In the case of the PN dipoles the distributions indicate a tilt angle of $(110.8pm 0.5)^{circ}$ in the LC phase and $(112.5pm 0.5)^{circ}$ in the LE phase. These results are quantitatively different from previous works, which indicated a smaller normal component of the PN dipole. Also, the distributions of the monolayer-projected chains and PN dipoles have been calculated. Chain distributions peak along a particular direction in the LC domains, while they are uniform in the LE phase. Long-range ordering associated with the projected PN dipoles is absent in both phases.
Mechanotransduction, the biological response to mechanical stress, is often initiated by the activation of mechanosensitive (MS) proteins upon mechanically induced deformations of the cell membrane. A current challenge to fully understand this proces s is to predict how lipid bilayers deform upon application of mechanical stress. In this context, it is now well established that anionic lipids influence the function of many proteins. Here, we test the hypothesize that anionic lipids could indirectly modulate MS proteins by alteration of the lipid bilayer mechanical properties. Using all-atom molecular dynamics simulations, we computed the bilayer bending rigidity (K_C), the area compressibility (K_A), and the surface shear viscosity ({eta}_m) of phosphocholine (PC) lipid bilayers containing or not phosphatidylserine (PS) or phosphatidylinositol bisphosphate (PIP2) at physiological concentrations in the lower leaflet. Tensionless leaflets were first checked for each asymmetric bilayer model, and a formula for embedding an asymmetric channel in an asymmetric bilayer is proposed. Results from two different sized bilayers show consistently that the addition of 20% surface charge in the lower leaflet of PC bilayer by PIP2 has minimal impact on its mechanical properties, while PS reduced the bilayer bending rigidity by 22%. As a comparison, supplementing the PIP2-enriched PC membrane with 30% cholesterol, a known rigidifying steroid lipid, produces a significant increase in all three mechanical constants. Analysis of pairwise splay moduli suggests that the effect of anionic lipids on bilayer bending rigidity largely depends on the number of anionic lipid pairs formed during simulations. The potential implication of bilayer bending rigidity is discussed in the framework of mechanosensitive Piezo channels.
We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phos hatidylcholine), hydrated with heavy water. This technique allows to discriminate the onset of mobility at different length scales for the different molecular components, as e.g.@ the lipid acyl-chains and the hydration water in between the membrane stacks, respectively, and provides a benchmark test regarding the feasibility of neutron backscattering investigations on these sample systems. We discuss freezing of the lipid acyl-chains, as observed by this technique, and observe a second freezing transition which we attribute to the hydration water.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا