ﻻ يوجد ملخص باللغة العربية
We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. This technique allows to discriminate the onset of mobility at different length scales for the different molecular components, as e.g.@ the lipid acyl-chains and the hydration water in between the membrane stacks, respectively, and provides a benchmark test regarding the feasibility of neutron backscattering investigations on these sample systems. We discuss freezing of the lipid acyl-chains, as observed by this technique, and observe a second freezing transition which we attribute to the hydration water.
Lipid membranes in a physiological context cannot be understood without taking into account their mobile environment. Here, we report on a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in hi
We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phos
We have studied the collective short wavelength dynamics in deuterated DMPC bilayers by inelastic neutron scattering. The corresponding dispersion relation $hbaromega$(Q) is presented for the gel and fluid phase of this model system. The temperature
This paper has been withdrawn.
We report on atomistic simulations of DPPC lipid monolayers using the CHARMM36 lipid force field and four-point OPC water model. The entire two-phase region where domains of the `liquid-condensed (LC) phase coexist with domains of the `liquid-expande