ﻻ يوجد ملخص باللغة العربية
We explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with $ab$ $initio$ molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridine-like molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I ($approx 40$% more than classical thermal expansion at $153$ K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. When predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and sophisticated treatments of Pauli repulsion are needed in dispersion-bound molecular crystals.
We provide a complete quantitative explanation for the anisotropic thermal expansion of hcp Ti at low temperature. The observed negative thermal expansion along the c-axis is reproduced theoretically by means of a parameter free theory which involves
Thermal expansion in materials can be accurately modeled with careful anharmonic phonon calculations within density functional theory. However, because of interest in controlling thermal expansion and the time consumed evaluating thermal expansion pr
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region
We report evidence of the absence of zero thermal expansion in well-characterized high-quality polycrystalline samples of YbGaGe. High-quality samples of YbGaGe were produced from high-purity starting elements and were extensively characterized using
MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted therm