ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino-Electron Scattering: General Constraints on Z and Dark Photon Models

191   0   0.0 ( 0 )
 نشر من قبل Farinaldo Queiroz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the framework of $U(1)_X$ models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas and derive limits on a variety of $U(1)_X$ models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light $Z^prime$ models.



قيم البحث

اقرأ أيضاً

267 - S. Bilmis , I. Turan , T.M. Aliev 2015
A possible manifestation of an additional light gauge boson $A^prime$, named as Dark Photon, associated with a group $U(1)_{rm B-L}$ is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant $g_{rm B-L}$ and the dark photon mass $M_{A^prime}$ is obtained. It is shown that contributions of interference term between the dark photon and the Standard Model are important. The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.
77 - T. de Boer , R. Busse , A. Kappes 2021
Dark matter (DM) scattering and its subsequent capture in the Sun can boost the local relic density, leading to an enhanced neutrino flux from DM annihilations that is in principle detectable at neutrino telescopes. We calculate the event rates expec ted for a radiative seesaw model containing both scalar triplet and singlet-doublet fermion DM candidates. In the case of scalar DM, the absence of a spin dependent scattering on nuclei results in a low capture rate in the Sun, which is reflected in an event rate of less than one per year in the current IceCube configuration with 86 strings. For singlet-doublet fermion DM, there is a spin dependent scattering process next to the spin independent one, which significantly boosts the event rate and thus makes indirect detection competitive with respect to the direct detection limits imposed by PICO-60. Due to a correlation between both scattering processes, the limits on the spin independent cross section set by XENON1T exclude also parts of the parameter space that can be probed at IceCube. Previously obtained limits by ANTARES, IceCube and Super-Kamiokande from the Sun and the Galactic Center are shown to be much weaker.
We quantify the effect of gauge bosons from a weakly coupled lepton flavor dependent $U(1)$ interaction on the matter background in the evolution of solar, atmospheric, reactor and long-baseline accelerator neutrinos in the global analysis of oscilla tion data. The analysis is performed for interaction lengths ranging from the Sun-Earth distance to effective contact neutrino interactions. We survey $sim 10000$ set of models characterized by the six relevant fermion $U(1)$ charges and find that in all cases, constraints on the coupling and mass of the $Z$ can be derived. We also find that about 5% of the $U(1)$ model charges lead to a viable LMA-D solution but this is only possible in the contact interaction limit. We explicitly quantify the constraints for a variety of models including $U(1)_{B-3L_e}$, $U(1)_{B-3L_mu}$, $U(1)_{B-3L_tau}$, $U(1)_{B-frac{3}{2}(L_mu+L_tau)}$, $U(1)_{L_e-L_mu}$, $U(1)_{L_e-L_tau}$, $U(1)_{L_e-frac{1}{2}(L_mu+L_tau)}$. We compare the constraints imposed by our oscillation analysis with the strongest bounds from fifth force searches, violation of equivalence principle as well as bounds from scattering experiments and white dwarf cooling. Our results show that generically, the oscillation analysis improves over the existing bounds from gravity tests for $Z$ lighter than $sim 10^{-8} to 10^{-11}$ eV depending on the specific couplings. In the contact interaction limit, we find that for most models listed above there are values of $g$ and $M_{Z}$ for which the oscillation analysis provides constraints beyond those imposed by laboratory experiments. Finally we illustrate the range of $Z$ and couplings leading to a viable LMA-D solution for two sets of models.
61 - B. Sevda , A. c{S}en , M. Demirci 2017
Constraints on couplings of several Beyond Standard Model Physics scenarios, mediated by massive intermediate particles including (1) Extra Z-prime, (2) New Light Spin-1 Boson, and (3) Charged Higgs Boson, are placed via neutrino-electron scattering channel to test Standard Model at low energy-momentum transfer regime. Data on $bar{ u}_{e}-e$ and $ u_{e}-e$ scattering from the TEXONO and LSND Experiments, respectively, are used. Upper bounds to coupling constants of Flavor Conserving and Flavor Violating New Light Spin-1 Boson and Charged Higgs Boson with respect to different mediator masses are determined. The relevant parameter spaces are extended by allowing light mediators. New lower mass limits for extra Z-prime gauge boson models are also placed.
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo site contributions from asymmetric distribution of (dark) matter and anti-matter, and thus it could appear in precision measurement of neutrino or anti-neutrino oscillations. Furthermore, the standard neutrino oscillation can occur from the symmetric dark matter effect even for massless neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا