ﻻ يوجد ملخص باللغة العربية
We study the framework of $U(1)_X$ models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas and derive limits on a variety of $U(1)_X$ models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light $Z^prime$ models.
A possible manifestation of an additional light gauge boson $A^prime$, named as Dark Photon, associated with a group $U(1)_{rm B-L}$ is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant $g_{rm B-L}$ and
Dark matter (DM) scattering and its subsequent capture in the Sun can boost the local relic density, leading to an enhanced neutrino flux from DM annihilations that is in principle detectable at neutrino telescopes. We calculate the event rates expec
We quantify the effect of gauge bosons from a weakly coupled lepton flavor dependent $U(1)$ interaction on the matter background in the evolution of solar, atmospheric, reactor and long-baseline accelerator neutrinos in the global analysis of oscilla
Constraints on couplings of several Beyond Standard Model Physics scenarios, mediated by massive intermediate particles including (1) Extra Z-prime, (2) New Light Spin-1 Boson, and (3) Charged Higgs Boson, are placed via neutrino-electron scattering
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo