ﻻ يوجد ملخص باللغة العربية
In the Group Steiner Tree problem (GST), we are given a (vertex or edge)-weighted graph $G=(V,E)$ on $n$ vertices, a root vertex $r$ and a collection of groups ${S_i}_{iin[h]}: S_isubseteq V(G)$. The goal is to find a min-cost subgraph $H$ that connects the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group $S_i$ has a demand $k_iin[k],kinmathbb N$, and we wish to find a min-cost $Hsubseteq G$ such that, for each group $S_i$, there is a vertex in $S_i$ connected to the root via $k_i$ (vertex or edge) disjoint paths. While GST admits $O(log^2 nlog h)$ approximation, its high connectivity variants are Label-Cover hard, and for the vertex-weighted version, the hardness holds even when $k=2$. Previously, positive results were known only for the edge-weighted version when $k=2$ [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where the disjoint paths may end at different vertices in a group [Chalermsook et al., SODA 2015]. Our main result is an $O(log nlog h)$ approximation for Restricted Group SNDP that runs in time $n^{f(k, w)}$, where $w$ is the treewidth of $G$. This nearly matches the lower bound when $k$ and $w$ are constant. The key to achieving this result is a non-trivial extension of the framework in [Chalermsook et al., SODA 2017], which embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs.
In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V,E)$ with costs on edges, along with a connectivity requirement $r(u,v)$ for each pair $u,v$ of vertices. The goal is to find a minimum-cost subset $E^*$ of edges,
We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth-
We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset
Understanding the structure of minor-free metrics, namely shortest path metrics obtained over a weighted graph excluding a fixed minor, has been an important research direction since the fundamental work of Robertson and Seymour. A fundamental idea t
It has long been known that Feedback Vertex Set can be solved in time $2^{mathcal{O}(wlog w)}n^{mathcal{O}(1)}$ on $n$-vertex graphs of treewidth $w$, but it was only recently that this running time was improved to $2^{mathcal{O}(w)}n^{mathcal{O}(1)}