ﻻ يوجد ملخص باللغة العربية
We report on a very long baseline interferometry (VLBI) experiment on giant radio pulses (GPs) from the Crab pulsar in the radio 1.4 to 1.7 GHz range to demonstrate a VLBI technique for searching for fast radio bursts (FRBs). We carried out the experiment on 26 July 2014 using the Kashima 34 m and Usuda 64 m radio telescopes of the Japanese VLBI Network (JVN) with a baseline of about 200 km. During the approximately 1 h observation, we could detect 35 GPs by high-time-resolution VLBI. Moreover, we determined the dispersion measure (DM) to be 56.7585 +/- 0.0025 on the basis of the mean DM of the 35 GPs detected by VLBI. We confirmed that the sensitivity of a detection of GPs using our technique is superior to that of a single-dish mode detection using the same telescope.
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our
No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hours of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range 1.5
We present the results of the simultaneous observation of the giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse
Very Long Baseline Interferometry, or VLBI, is the observing technique yielding the highest-resolution images today. Whilst a traditionally large fraction of VLBI observations is concentrating on Active Galactic Nuclei, the number of observations con
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these