ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep learning in radiology: an overview of the concepts and a survey of the state of the art

49   0   0.0 ( 0 )
 نشر من قبل Maciej Mazurowski
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mostly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we review the clinical reality of radiology and discuss the opportunities for application of deep learning algorithms. We also introduce basic concepts of deep learning including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review the broad range of utilized deep learning algorithms. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future.



قيم البحث

اقرأ أيضاً

Despite the tremendous progress recently made towards automatic sleep staging in adults, it is currently known if the most advanced algorithms generalize to the pediatric population, which displays distinctive characteristics in overnight polysomnogr aphy (PSG). To answer the question, in this work, we conduct a large-scale comparative study on the state-of-the-art deep learning methods for pediatric automatic sleep staging. A selection of six different deep neural networks with diverging features are adopted to evaluate a sample of more than 1,200 children across a wide spectrum of obstructive sleep apnea (OSA) severity. Our experimental results show that the performance of automated pediatric sleep staging when evaluated on new subjects is equivalent to the expert-level one reported on adults, reaching an overall accuracy of 87.0%, a Cohens kappa of 0.829, and a macro F1-score of 83.5% in case of single-channel EEG. The performance is further improved when dual-channel EEG$cdot$EOG are used, reaching an accuracy of 88.2%, a Cohens kappa of 0.844, and a macro F1-score of 85.1%. The results also show that the studied algorithms are robust to concept drift when the training and test data were recorded 7-months apart. Detailed analyses further demonstrate almost perfect agreement between the automatic scorers to one another and their similar behavioral patterns on the staging errors.
During the last decade, the deluge of multimedia data has impacted a wide range of research areas, including multimedia retrieval, 3D tracking, database management, data mining, machine learning, social media analysis, medical imaging, and so on. Mac hine learning is largely involved in multimedia applications of building models for classification and regression tasks etc., and the learning principle consists in designing the models based on the information contained in the multimedia dataset. While many paradigms exist and are widely used in the context of machine learning, most of them suffer from the `curse of dimensionality, which means that some strange phenomena appears when data are represented in a high-dimensional space. Given the high dimensionality and the high complexity of multimedia data, it is important to investigate new machine learning algorithms to facilitate multimedia data analysis. To deal with the impact of high dimensionality, an intuitive way is to reduce the dimensionality. On the other hand, some researchers devoted themselves to designing some effective learning schemes for high-dimensional data. In this survey, we cover feature transformation, feature selection and feature encoding, three approaches fighting the consequences of the curse of dimensionality. Next, we briefly introduce some recent progress of effective learning algorithms. Finally, promising future trends on multimedia learning are envisaged.
In the space of only a few years, deep generative modeling has revolutionized how we think of artificial creativity, yielding autonomous systems which produce original images, music, and text. Inspired by these successes, researchers are now applying deep generative modeling techniques to the generation and optimization of molecules - in our review we found 45 papers on the subject published in the past two years. These works point to a future where such systems will be used to generate lead molecules, greatly reducing resources spent downstream synthesizing and characterizing bad leads in the lab. In this review we survey the increasingly complex landscape of models and representation schemes that have been proposed. The four classes of techniques we describe are recursive neural networks, autoencoders, generative adversarial networks, and reinforcement learning. After first discussing some of the mathematical fundamentals of each technique, we draw high level connections and comparisons with other techniques and expose the pros and cons of each. Several important high level themes emerge as a result of this work, including the shift away from the SMILES string representation of molecules towards more sophisticated representations such as graph grammars and 3D representations, the importance of reward function design, the need for better standards for benchmarking and testing, and the benefits of adversarial training and reinforcement learning over maximum likelihood based training.
We present a brief history of the field of interpretable machine learning (IML), give an overview of state-of-the-art interpretation methods, and discuss challenges. Research in IML has boomed in recent years. As young as the field is, it has over 20 0 years old roots in regression modeling and rule-based machine learning, starting in the 1960s. Recently, many new IML methods have been proposed, many of them model-agnostic, but also interpretation techniques specific to deep learning and tree-based ensembles. IML methods either directly analyze model components, study sensitivity to input perturbations, or analyze local or global surrogate approximations of the ML model. The field approaches a state of readiness and stability, with many methods not only proposed in research, but also implemented in open-source software. But many important challenges remain for IML, such as dealing with dependent features, causal interpretation, and uncertainty estimation, which need to be resolved for its successful application to scientific problems. A further challenge is a missing rigorous definition of interpretability, which is accepted by the community. To address the challenges and advance the field, we urge to recall our roots of interpretable, data-driven modeling in statistics and (rule-based) ML, but also to consider other areas such as sensitivity analysis, causal inference, and the social sciences.
Graphs have been widely used to represent complex data in many applications. Efficient and effective analysis of graphs is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses ML to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding (GE) methods and end-to-end (E2E) learning methods. For GE methods, learning graph embedding has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For E2E learning methods, the learning of graph embeddings does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا