ﻻ يوجد ملخص باللغة العربية
The importance of accounting for the inhomogeneity of the magnetic field distribution and roundness of domain walls near the surface of type-I superconductors in the intermediate state for forming the equilibrium flux structure was predicted by Landau eight decades ago. Further studies confirmed this prediction and extended it to all equilibrium properties of this state. Here we report on direct depth-resolved measurements of the field distribution and shape of domains near the surface of high-purity type-I (indium) films in a perpendicular field using Low-Energy Muon Spin Rotation spectroscopy. We find that at low applied fields (in about half of the field range of the intermediate state) the field distribution and domains shape agrees with that proposed by Tinkham. However, for high fields our data suggest that reality differs from theoretical expectations. In particular, the width of the superconducting laminae can expand near the surface leading to formation of a maximum in the static magnetic field in the current-free space outside the sample. A possible interpretation of these experimental results is discussed.
The formation of normal-state domains in type-I superconducting indium films is investigated using the high resolution magneto-optical imaging technique. The observed patterns consist of coexisting circular and lamellar normal-phase domains surrounde
To address unsolved fundamental problems of the intermediate state (IS), the equilibrium magnetic flux structure and the critical field in a high purity type-I superconductor (indium film) are investigated using magneto-optical imaging with a 3D vect
Normal state bubble patterns in Type I superconducting Indium and Lead slabs are studied by the high resolution magneto-optical imaging technique. The size of bubbles is found to be almost independent of the long-range interaction between the normal
M. Tinkham and P. G. de Gennes, described in their books the existence of an intermediate type-I superconductor as a consequence of an external surface that affects the well known classification of superconductors into type-I and II. Here we consider
We study the influence of Born impurity scattering on the zero-energy Andreev bound states near the surface of a d-wave superconductor with and without an externally applied magnetic field. Without an external magnetic field we show that the effect o