ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoinduced coherent oscillations in the one-dimensional two-orbital Hubbard model

126   0   0.0 ( 0 )
 نشر من قبل Nobuya Maeshima
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study photoinduced ultrafast coherent oscillations originating from orbital degrees of freedom in the one-dimensional two-orbital Hubbard model. By solving the time-dependent Schrodinger equation for the numerically exact many-electron wave function, we obtain time-dependent optical response functions. The calculated spectra show characteristic coherent oscillations that vary with the frequency of probe light. A simple analysis for the dominant oscillating components clarifies that these photoinduced oscillations are caused by the quantum interference between photogenerated states. The oscillation attributed to the Raman-active orbital excitations (orbitons) clearly appears around the charge-transfer peak.



قيم البحث

اقرأ أيضاً

Photoinduced dynamics in an excitonic insulator is studied theoretically by using a two-orbital Hubbard model on the square lattice where the excitonic phase in the ground state is characterized by the BCS-BEC crossover as a function of the interorbi tal Coulomb interaction. We consider the case where the order has a wave vector $Q=(0,0)$ and photoexcitation is introduced by a dipole transition. Within the mean-field approximation, we show that the excitonic order can be enhanced by the photoexcitation when the system is initially in the BEC regime of the excitonic phase, whereas it is reduced if the system is initially in the BCS regime. The origin of this difference is discussed from behaviors of momentum distribution functions and momentum-dependent excitonic pair condensation. In particular, we show that the phases of the excitonic pair condensation have an important role in determining whether the excitonic order is enhanced or not.
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robu st photoinduced in-gap state appears in the optical conductivity, depending on the parameters of the pulse. Here, by tuning its conditions, we maximize the overlap of the time-evolving wavefunction with excited states displaying the elusive bond-ordered wave of this model. Finally, we make a clear connection between the emergence of this order and the formation of the aforementioned in-gap state, suggesting the potential observation of purely electronic (i.e., not associated with a Peierls instability) bond-ordered waves in experiments involving molecular crystals.
We investigate the condition for the photoinduced enhancement of an excitonic order in a two-orbital Hubbard model, which has been theoretically proposed in our previous work [Phys. Rev. B 97, 115105 (2018)], and analyze it from the viewpoint of the Rabi oscillation. Within the mean-field approximation, we simulate real-time dynamics of an excitonic insulator with a direct gap, where the pair condensation in the initial state is of BEC nature and the photoexcitation is introduced by electric dipole transitions. We first discuss that in the atomic limit our model is reduced to a two-level system that undergoes the Rabi oscillation, so that for single cycle pulses physical quantities after the photoirradiation are essentially determined by the ratio of the Rabi frequency to the pump-light frequency. Then, it is shown that this picture holds even in the case of nonzero transfer integrals where each one-particle state exhibits the Rabi oscillation leading to the enhancement of the excitonic order. We demonstrate that effects of electron-phonon interactions do not alter the results qualitatively. We also examine many-body dynamics by the exact diagonalization method on small clusters, which strongly suggests that our mechanism for the enhancement of the exctionic order survives even when quantum fluctuations are taken into account.
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
The recent discovery of superconductivity under high pressure in the ladder compound BaFe$_2$S$_3$ has opened a new field of research in iron-based superconductors with focus on quasi one-dimensional geometries. In this publication, using the Density Matrix Renormalization Group technique, we study a two-orbital Hubbard model defined in one dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard $U$ repulsion and robust Hund coupling $J_H/U=0.25$. Binding does not occur neither in weak coupling nor at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. The Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا