ترغب بنشر مسار تعليمي؟ اضغط هنا

Robustness of Rotation-Equivariant Networks to Adversarial Perturbations

297   0   0.0 ( 0 )
 نشر من قبل Beranger Dumont
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks have been shown to be vulnerable to adversarial examples: very small perturbations of the input having a dramatic impact on the predictions. A wealth of adversarial attacks and distance metrics to quantify the similarity between natural and adversarial images have been proposed, recently enlarging the scope of adversarial examples with geometric transformations beyond pixel-wise attacks. In this context, we investigate the robustness to adversarial attacks of new Convolutional Neural Network architectures providing equivariance to rotations. We found that rotation-equivariant networks are significantly less vulnerable to geometric-based attacks than regular networks on the MNIST, CIFAR-10, and ImageNet datasets.

قيم البحث

اقرأ أيضاً

Deep neural networks are vulnerable to adversarial examples, which becomes one of the most important research problems in the development of deep learning. While a lot of efforts have been made in recent years, it is of great significance to perform correct and complete evaluations of the adversarial attack and defense algorithms. In this paper, we establish a comprehensive, rigorous, and coherent benchmark to evaluate adversarial robustness on image classification tasks. After briefly reviewing plenty of representative attack and defense methods, we perform large-scale experiments with two robustness curves as the fair-minded evaluation criteria to fully understand the performance of these methods. Based on the evaluation results, we draw several important findings and provide insights for future research.
Deep Neural Networks, despite their great success in diverse domains, are provably sensitive to small perturbations on correctly classified examples and lead to erroneous predictions. Recently, it was proposed that this behavior can be combatted by o ptimizing the worst case loss function over all possible substitutions of training examples. However, this can be prone to weighing unlikely substitutions higher, limiting the accuracy gain. In this paper, we study adversarial robustness through randomized perturbations, which has two immediate advantages: (1) by ensuring that substitution likelihood is weighted by the proximity to the original word, we circumvent optimizing the worst case guarantees and achieve performance gains; and (2) the calibrated randomness imparts differentially-private model training, which additionally improves robustness against adversarial attacks on the model outputs. Our approach uses a novel density-based mechanism based on truncated Gumbel noise, which ensures training on substitutions of both rare and dense words in the vocabulary while maintaining semantic similarity for model robustness.
To remove the effects of adversarial perturbations, preprocessing defenses such as pixel discretization are appealing due to their simplicity but have so far been shown to be ineffective except on simple datasets such as MNIST, leading to the belief that pixel discretization approaches are doomed to failure as a defense technique. This paper revisits the pixel discretization approaches. We hypothesize that the reason why existing approaches have failed is that they have used a fixed codebook for the entire dataset. In particular, we find that can lead to situations where images become more susceptible to adversarial perturbations and also suffer significant loss of accuracy after discretization. We propose a novel image preprocessing technique called Essential Features that uses an adaptive codebook that is based on per-image content and threat model. Essential Features adaptively selects a separable set of color clusters for each image to reduce the color space while preserving the pertinent features of the original image, maximizing both separability and representation of colors. Additionally, to limit the adversarys ability to influence the chosen color clusters, Essential Features takes advantage of spatial correlation with an adaptive blur that moves pixels closer to their original value without destroying original edge information. We design several adaptive attacks and find that our approach is more robust than previous baselines on $L_infty$ and $L_2$ bounded attacks for several challenging datasets including CIFAR-10, GTSRB, RESISC45, and ImageNet.
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th ese variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D enviro nments; however, relatively little is known about the robustness of these approaches in an adversarial setting. The lack of comprehensive analysis makes it difficult to justify deployment of 3D deep learning models in real-world, safety-critical applications. In this work, we develop an algorithm for analysis of pointwise robustness of neural networks that operate on 3D data. We show that current approaches presented for understanding the resilience of state-of-the-art models vastly overestimate their robustness. We then use our algorithm to evaluate an array of state-of-the-art models in order to demonstrate their vulnerability to occlusion attacks. We show that, in the worst case, these networks can be reduced to 0% classification accuracy after the occlusion of at most 6.5% of the occupied input space.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا