ﻻ يوجد ملخص باللغة العربية
We provide a thermodynamically consistent description of energy, charge and spin transfers in a thermoelectric quantum-dot spin valve in the collinear configuration based on nonequilibrium Greens function and full counting statistics. We use the fluctuation theorem symmetry and the concept of entropy production to characterize the efficiency with which thermal gradients can transduce charges or spins against their chemical potentials, arbitrary far from equilibrium. Close to equilibrium, we recover the Onsager reciprocal relations and the connection to linear response notions of performance such as the figure of merit. We also identify regimes where work extraction is more efficient far then close from equilibrium.
A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (Q
We study the electronic waiting time distributions (WTDs) in a non-interacting quantum dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using scattering matrix approach. Since the quantum
Electron transport properties in a triple-quantum-dot ring with three terminals are theoretically studied. By introducing local Rashba spin-orbit interaction on an individual quantum dot, we calculate the charge and spin currents in one lead. We find
Coherent two-level systems, or qubits, based on electron spins in GaAs quantum dots are strongly coupled to the nuclear spins of the host lattice via the hyperfine interaction. Realizing nuclear spin control would likely improve electron spin coheren
We study the spin-dependent transport properties of a spin valve based on a double quantum dot. Each quantum dot is assumed to be strongly coupled to its own ferromagnetic lead, while the coupling between the dots is relatively weak. The current flow