ترغب بنشر مسار تعليمي؟ اضغط هنا

Large voltage-tunable spin valve based on a double quantum dot

68   0   0.0 ( 0 )
 نشر من قبل Ireneusz Weymann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spin-dependent transport properties of a spin valve based on a double quantum dot. Each quantum dot is assumed to be strongly coupled to its own ferromagnetic lead, while the coupling between the dots is relatively weak. The current flowing through the system is determined within the perturbation theory in the hopping between the dots, whereas the spectrum of a quantum dot-ferromagnetic lead subsystem is determined by means of the numerical renormalization group method. The spin-dependent charge fluctuations between ferromagnets and quantum dots generate an effective exchange field, which splits the double dot levels. Such field can be controlled, separately for each quantum dot, by the gate voltages or by changing the magnetic configuration of external leads. We demonstrate that the considered double quantum dot spin valve setup exhibits enhanced magnetoresistive properties, including both normal and inverse tunnel magnetoresistance. We also show that this system allows for the generation of highly spin-polarized currents, which can be controlled by purely electrical means. The considered double quantum dot with ferromagnetic contacts can thus serve as an efficient voltage-tunable spin valve characterized by high output parameters.

قيم البحث

اقرأ أيضاً

A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (Q Ds), individually spin-polarized by ferromagnetic split-gates (FSGs). As a proof of principle, we fabricated a double QD spin valve consisting of two weakly coupled semiconducting QDs in an InAs nanowire (NW), each with independent FSGs that can be magnetized in parallel or anti-parallel. In tunneling magnetoresistance (TMR) experiments at zero external magnetic field, we find a strongly reduced spin valve conductance for the two anti-parallel configurations, with a single QD polarization of $sim 27%$. The TMR can be significantly improved by a small external field and optimized gate voltages, which results in a continuously electrically tunable TMR between $+80%$ and $-90%$. A simple model quantitatively reproduces all our findings, suggesting a gate tunable QD polarization of $pm 80%$. Such versatile spin-polarized QDs are suitable for various applications, for example in spin projection and correlation experiments in a large variety of nanoelectronics experiments.
76 - Gaomin Tang , Fuming Xu , Shuo Mi 2017
We study the electronic waiting time distributions (WTDs) in a non-interacting quantum dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using scattering matrix approach. Since the quantum dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first passage time distributions to quantitatively characterize the spin flip process. The influence degree shows a similar behavior with spin transfer torque and can be a new pathway to characterize spin correlation in spintronics system.
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impu rity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
We investigated the spin-dependent transport properties of a lateral spin-valve device with a 600 nm-long GaAs channel and ferromagnetic MnGa electrodes with perpendicular magnetization. Its current-voltage characteristics show nonlinear behavior bel ow 50 K, indicating that tunnel transport through the MnGa/GaAs Schottky barrier is dominant at low temperatures. We observed clear magnetoresistance (MR) ratio up to 12% at 4 K when applying a magnetic field perpendicular to the film plane. Furthermore, a large spin-dependent output voltage of 33 mV is obtained. These values are the highest in lateral ferromagnetic metal / semiconductor / ferromagnetic metal spin-valve devices reported so far.
110 - S. Baba , S. Matsuo , H. Kamata 2017
We report fabrication and measurement of a device where closely-placed two parallel InAs nanowires (NWs) are contacted by source and drain normal metal electrodes. Established technique includes selective deposition of double nanowires onto a previou sly defined gate region. By tuning the junction with the finger bottom gates, we confirmed the formation of parallel double quantum dots, one in each NW, with a finite electrostatic coupling between each other. With the fabrication technique established in this study, devices proposed for more advanced experiments, such as Cooper-pair splitting and the observation of parafermions, can be realized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا