ﻻ يوجد ملخص باللغة العربية
We study the spin-dependent transport properties of a spin valve based on a double quantum dot. Each quantum dot is assumed to be strongly coupled to its own ferromagnetic lead, while the coupling between the dots is relatively weak. The current flowing through the system is determined within the perturbation theory in the hopping between the dots, whereas the spectrum of a quantum dot-ferromagnetic lead subsystem is determined by means of the numerical renormalization group method. The spin-dependent charge fluctuations between ferromagnets and quantum dots generate an effective exchange field, which splits the double dot levels. Such field can be controlled, separately for each quantum dot, by the gate voltages or by changing the magnetic configuration of external leads. We demonstrate that the considered double quantum dot spin valve setup exhibits enhanced magnetoresistive properties, including both normal and inverse tunnel magnetoresistance. We also show that this system allows for the generation of highly spin-polarized currents, which can be controlled by purely electrical means. The considered double quantum dot with ferromagnetic contacts can thus serve as an efficient voltage-tunable spin valve characterized by high output parameters.
A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (Q
We study the electronic waiting time distributions (WTDs) in a non-interacting quantum dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using scattering matrix approach. Since the quantum
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impu
We investigated the spin-dependent transport properties of a lateral spin-valve device with a 600 nm-long GaAs channel and ferromagnetic MnGa electrodes with perpendicular magnetization. Its current-voltage characteristics show nonlinear behavior bel
We report fabrication and measurement of a device where closely-placed two parallel InAs nanowires (NWs) are contacted by source and drain normal metal electrodes. Established technique includes selective deposition of double nanowires onto a previou