ترغب بنشر مسار تعليمي؟ اضغط هنا

Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres

52   0   0.0 ( 0 )
 نشر من قبل Peter Gao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion-sedimentation model from Ackerman & Marley (2001) that relies on a sedimentation efficiency parameter, $f_{rm sed}$, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in $f_{rm sed}$ across a large range of eddy diffusivities ($K_{zz}$), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that $f_{rm sed}$ is dependent on $K_{zz}$, but not gravity, when $K_{zz}$ is held constant. $f_{rm sed}$ is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large $f_{rm sed}$ ($>$1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, $f_{rm sed}$ is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that $f_{rm sed}$ could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.

قيم البحث

اقرأ أيضاً

Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planet ary systems a twin of the solar system. Such diversity on many scales and structural levels requires fundamental theoretical approaches. Large efforts are underway to develop individual aspects of exoplanet sciences, like exoplanet atmospheres, cloud formation, disk chemistry, planet system dynamics, mantle convection, mass loss of planetary atmospheres. The following challenges need to be addressed in tandem with observational efforts. They provide the opportunity to progress our understanding of exoplanets and their atmospheres by exploring our models as virtual laboratories to fill gaps in observational data from different instruments and missions, and taken at different instances of times: Challenge a) Building complex models based on theoretical rigour that aim to understand the interactions of atmospheric processes, to treat cloud formation and its feedback onto the gas-phase chemistry and the energy budget of the planetary atmosphere moving away from solar-system inspired parameterisations. Challenge b) Enabling cloud modelling based on fundamental physio-chemical insights in order to be applicable to the large and unexplored chemical, radiative and thermodynamical parameter range of exoplanets in the universe. Challenge b) will be explored in this chapter of the book ExoFrontiers.
Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmosphe ric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud particles may be approximated in certain limiting cases of small and large particles in order to facilitate physical understanding. Since clouds play such important roles in planetary atmospheres, cloud modeling may well prove to be the limiting factor in our ability to interpret future observations of extrasolar planets.
204 - Christiane Helling 2008
Clouds seem like an every-day experience. But -- do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed micro-physical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.
Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regim e similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.
Clouds are expected to form in a wide range of conditions in the atmosphere of exoplanets given the large range of possible condensible species. However this diversity might lead to very different small-scale dynamics depending on radiative transfer in various thermal conditions: we aim at providing some insights into these dynamical regimes. We perform an analytical linear stability analysis of a compositional discontinuity with a heating source term that depends on composition. We also perform idealized two-dimensional (2D) simulations of an opacity discontinuity in a stratified medium with the code ARK. We use a two-stream grey model for radiative transfer and explore the brown-dwarf and earth-like regimes. We reveal the existence of a Radiative Rayleigh-Taylor Instability (RRTI hereafter, a particular case of diabatic Rayleigh-Taylor instability) when an opacity discontinuity is present in a stratified medium. This instability is similar in nature to diabatic convection and relies only on buoyancy with radiative transfer heating and cooling. When the temperature is decreasing with height in the atmosphere, a lower-opacity medium on top of a higher-opacity medium is dynamically unstable while a higher-opacity medium on top of a lower-opacity medium is stable. This stability/instability behavior is reversed if the temperature is increasing with height. The existence of the RRTI could have important implications for the stability of the cloud cover of a wide range of planetary atmospheres. In our solar system, it could help explain the formation of mammatus cloud in Earth atmospheres and the existence of Venus cloud deck. Likewise, it suggests that stable and large scale cloud covers could be ubiquitous in strongly irradiated exoplanets but might be more patchy in low-irradiated or isolated objects like brown dwarfs and directly imaged exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا