ترغب بنشر مسار تعليمي؟ اضغط هنا

An $O(1)$-Approximation Algorithm for Dynamic Weighted Vertex Cover with Soft Capacity

99   0   0.0 ( 0 )
 نشر من قبل Chung-Shou Liao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study considers the (soft) capacitated vertex cover problem in a dynamic setting. This problem generalizes the dynamic model of the vertex cover problem, which has been intensively studied in recent years. Given a dynamically changing vertex-weighted graph $G=(V,E)$, which allows edge insertions and edge deletions, the goal is to design a data structure that maintains an approximate minimum vertex cover while satisfying the capacity constraint of each vertex. That is, when picking a copy of a vertex $v$ in the cover, the number of $v$s incident edges covered by the copy is up to a given capacity of $v$. We extend Bhattacharya et al.s work [SODA15 and ICALP15] to obtain a deterministic primal-dual algorithm for maintaining a constant-factor approximate minimum capacitated vertex cover with $O(log n / epsilon)$ amortized update time, where $n$ is the number of vertices in the graph. The algorithm can be extended to (1) a more general model in which each edge is associated with a nonuniform and unsplittable demand, and (2) the more general capacitated set cover problem.

قيم البحث

اقرأ أيضاً

We study the Capacitated k-Median problem, for which all the known constant factor approximation algorithms violate either the number of facilities or the capacities. While the standard LP-relaxation can only be used for algorithms violating one of t he two by a factor of at least two, Shi Li [SODA15, SODA16] gave algorithms violating the number of facilities by a factor of 1+{epsilon} exploring properties of extended relaxations. In this paper we develop a constant factor approximation algorithm for Uniform Capacitated k-Median violating only the capacities by a factor of 1+{epsilon}. The algorithm is based on a configuration LP. Unlike in the algorithms violating the number of facilities, we cannot simply open extra few facilities at selected locations. Instead, our algorithm decides about the facility openings in a carefully designed dependent rounding process.
In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V,E)$ with costs on edges, along with a connectivity requirement $r(u,v)$ for each pair $u,v$ of vertices. The goal is to find a minimum-cost subset $E^*$ of edges, that satisfies the given set of pairwise connectivity requirements. In the edge-connectivity version we need to ensure that there are $r(u,v)$ edge-disjoint paths for every pair $u, v$ of vertices, while in the vertex-connectivity version the paths are required to be vertex-disjoint. The edge-connectivity version of SNDP is known to have a 2-approximation. However, no non-trivial approximation algorithm has been known so far for the vertex version of SNDP, except for special cases of the problem. We present an extremely simple algorithm to achieve an $O(k^3 log n)$-approximation for this problem, where $k$ denotes the maximum connectivity requirement, and $n$ denotes the number of vertices. We also give a simple proof of the recently discovered $O(k^2 log n)$-approximation result for the single-source version of vertex-connectivity SNDP. We note that in both cases, our analysis in fact yields slightly better guarantees in that the $log n$ term in the approximation guarantee can be replaced with a $log tau$ term where $tau$ denotes the number of distinct vertices that participate in one or more pairs with a positive connectivity requirement.
We introduce and study two natural generalizations of the Connected VertexCover (VC) problem: the $p$-Edge-Connected and $p$-Vertex-Connected VC problem (where $p geq 2$ is a fixed integer). Like Connected VC, both new VC problems are FPT, but do not admit a polynomial kernel unless $NP subseteq coNP/poly$, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. We obtain an $O(2^{O(pk)}n^{O(1)})$-time algorithm for the $p$-Edge-Connected VC and an $O(2^{O(k^2)}n^{O(1)})$-time algorithm for the $p$-Vertex-Connected VC. Finally, we describe a $2(p+1)$-approximation algorithm for the $p$-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning $p$-vertex/edge-connected subgraph of a $p$-vertex/edge-connected graph obtained independently by Nishizeki and Poljak (1994) and Nagamochi and Ibaraki (1992).
We present a massively parallel algorithm, with near-linear memory per machine, that computes a $(2+varepsilon)$-approximation of minimum-weight vertex cover in $O(loglog d)$ rounds, where $d$ is the average degree of the input graph. Our result fi lls the key remaining gap in the state-of-the-art MPC algorithms for vertex cover and matching problems; two classic optimization problems, which are duals of each other. Concretely, a recent line of work---by Czumaj et al. [STOC18], Ghaffari et al. [PODC18], Assadi et al. [SODA19], and Gamlath et al. [PODC19]---provides $O(loglog n)$ time algorithms for $(1+varepsilon)$-approximate maximum weight matching as well as for $(2+varepsilon)$-approximate minimum cardinality vertex cover. However, the latter algorithm does not work for the general weighted case of vertex cover, for which the best known algorithm remained at $O(log n)$ time complexity.
We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port numbering is required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا