ﻻ يوجد ملخص باللغة العربية
In this work, we have studied the total scattering cross section ($sigma$), differential scattering cross section ($dsigma/dQ^2$) as well as the longitudinal ($P_L(E_e,Q^2)$), perpendicular ($P_P(E_e,Q^2)$), and transverse ($P_T(E_e,Q^2)$) components of the polarization of the final hadron ($n$, $ Lambda$ and $Sigma^0$) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high $ Q^2$ in the strangeness sector which can provide test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.
Recoil proton polarization observables were measured for both the p($vec {rm e}$,e$^primevec{rm p},$) and d($vec {rm e}$,e$^primevec{rm p},)$n reactions at two values of Q$^2$ using a newly commissioned proton Focal Plane Polarimeter at the M.I.T.-Ba
We show that quantum entanglement between causally separated regions of a nucleon in antineutrino-nucleon scattering manifests itself as a thermal component in the resulting pion momentum distribution. For antineutrino scattering coherently from the
With the availability of high luminosity electron beam at the accelerators, there is now the possibility of studying weak quasielastic hyperon production off the proton, i.e. $e^-p to u_e Y(Y=Lambda,Sigma^0)$, which will enable the determination of
In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutr