ترغب بنشر مسار تعليمي؟ اضغط هنا

The consequences of a nearby supernova on the early Solar System

67   0   0.0 ( 0 )
 نشر من قبل Simon Portegies Zwart
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If the Sun was born in a relatively compact open cluster, it is quite likely that a massive (10MSun) star was nearby when it exploded in a supernova. The repercussions of a supernova can be rather profound, and the current Solar System may still bear the memory of this traumatic event. The truncation of the Kuiper belt and the tilt of the ecliptic plane with respect to the Suns rotation axis could be such signatures. We simulated the effect of a nearby supernova on the young Solar System using the Astronomical Multipurpose Software Environment. Our calculations are realized in two subsequent steps in which we study the effect of the supernova irradiation on the circumstellar disk and the effect of the impact of the nuclear blast-wave which arrives a few decades later. We find that the blastwave of our adopted supernova exploding at a distance of $0.15$--$0.40$,pc and at an angle of $35^circ$--$65^circ$ with respect to the angular-momentum axis of the circumsolar disk would induce a misalignment between the Suns equator and its disk to $5^circ.6pm1^circ.2$, consistent with the current value. The blast of a supernova truncates the disk at a radius between $42$ and $55$,au, which is consistent with the current edge of the Kuiper belt. For the most favored parameters, the irradiation by the supernova as well as the blast wave heat the majority of the disk to $sim 1200$,K, which is sufficiently hot to melt chondrules in the circumstellar disk. The majority of planetary system may have been affected by a nearby supernova, some of its repercussions, such as truncation and tilting of the disk, may still be visible in their current planetary systems topology. The amount of material from the supernova blast wave that is accreted by the circumstellar disk is too small by several orders of magnitude to explain the current abundance of the short live radionuclide $^{26}$Al.



قيم البحث

اقرأ أيضاً

We investigate the enrichment of the pre-solar cloud core with short lived radionuclides (SLRs), especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich inclusions (CAIs) in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the the solar system. Freshly synthesized radioactive 26Al has to be included and well mixed within 20kyr. After discussing various scenarios including X-winds, AGB stars and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20kyr. We show that a cold clump of 10Msun at a distance of 5pc can be sufficiently enriched in 26Al and triggered into collapse fast enough - within 18kyr after encountering the supernova shock - for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire supernova bubble. In summary, we envision an environment for the birth place of the Solar System 4.567Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an HII region will be hit by a supernova explosion in the future. We show that the triggered collapse and formation of the Solar System as well as the required enrichment with radioactive 26Al are possible in this scenario.
We present photometry and time-series spectroscopy of the nearby type Ia supernova (SN Ia) SN 2015F over $-16$ days to $+80$ days relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 201 5F is a slightly sub-luminous SN Ia with a decline rate of $Delta m15(B)=1.35 pm 0.03$ mag, placing it in the region between normal and SN 1991bg-like events. Our densely-sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II $lambda 6580$ absorption until $-4$ days, and high-velocity Ca II is particularly strong at $<-10$ days at expansion velocities of $simeq$23000kms. At early times, our spectral modelling with syn++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities $>14000$ km s$^{-1}$, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at $sim$6800 AA that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 AA feature is weakly present in other normal SN Ia events, and common in the SN 1991bg-like sub-class.
The abundances of 92Nb and 146Sm in the early Solar System are determined from meteoritic analysis and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion o f white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early Solar System and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires that the 92Nb/92Mo ratio in the early Solar System is at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the alpha-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ~10 Myr must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings.
321 - Katharina Lodders 2010
Representative abundances of the chemical elements for use as a solar abundance standard in astronomical and planetary studies are summarized. Updated abundance tables for solar system abundances based on meteorites and photospheric measurements are presented.
Passing stars can perturb the Oort Cloud, triggering comet showers and potentially extinction events on Earth. We combine velocity measurements for the recently discovered, nearby, low-mass binary system WISE J072003.20-084651.2 (Scholzs star) to cal culate its past trajectory. Integrating the Galactic orbits of this $sim$0.15 M$_{odot}$ binary system and the Sun, we find that the binary passed within only 52$^{+23}_{-14}$ kAU (0.25$^{+0.11}_{-0.07}$ parsec) of the Sun 70$^{+15}_{-10}$ kya (1$sigma$ uncertainties), i.e. within the outer Oort Cloud. This is the closest known encounter of a star to our solar system with a well-constrained distance and velocity. Previous work suggests that flybys within 0.25 pc occur infrequently ($sim$0.1 Myr$^{-1}$). We show that given the low mass and high velocity of the binary system, the encounter was dynamically weak. Using the best available astrometry, our simulations suggest that the probability that the star penetrated the outer Oort Cloud is $sim$98%, but the probability of penetrating the dynamically active inner Oort Cloud ($<$20 kAU) is $sim$10$^{-4}$. While the flyby of this system likely caused negligible impact on the flux of long-period comets, the recent discovery of this binary highlights that dynamically important Oort Cloud perturbers may be lurking among nearby stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا