ﻻ يوجد ملخص باللغة العربية
We propose a decomposition method to prove non-asymptotic bound for the convergence of empirical measures in various dual norms. The main point is to show that if one measures convergence in duality with sufficiently regular observables, the convergence is much faster than for, say, merely Lipschitz observables. Actually, assuming $s$ derivatives with $s < d/2$ ($d$ the dimension) ensures an optimal rate of convergence of $1/sqrt{n}$ ($n$ the number of samples). The method is flexible enough to apply to Markov chains which satisfy a geometric contraction hypothesis, assuming neither stationarity nor reversibility, with the same convergence speed up to a power of logarithm factor. Our results are stated as controls of the expected distance between the empirical measure and its limit, but we explain briefly how the classical method of bounded difference can be used to deduce concentration estimates.
This paper concerns the convergence of empirical measures in high dimensions. We propose a new class of metrics and show that under such metrics, the convergence is free of the curse of dimensionality (CoD). Such a feature is critical for high-dimens
In this paper we study the regularity properties of linear and polynomial images of Skorohod differentiable measures. Firstly, we obtain estimates for the Skorohod derivative norm of a projection of a product of Scorohod differentiable measures. In t
Let $X_t$ be the (reflecting) diffusion process generated by $L:=Delta+ abla V$ on a complete connected Riemannian manifold $M$ possibly with a boundary $partial M$, where $Vin C^1(M)$ such that $mu(d x):= e^{V(x)}d x$ is a probability measure. We es
We prove that moderate deviations for empirical measures for countable nonhomogeneous Markov chains hold under the assumption of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chains in Ces`aro sense.
The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is