ﻻ يوجد ملخص باللغة العربية
Implicational bases are objects of interest in formal concept analysis and its applications. Unfortunately, even the smallest base, the Duquenne-Guigues base, has an exponential size in the worst case. In this paper, we use results on the average number of minimal transversals in random hypergraphs to show that the base of proper premises is, on average, of quasi-polynomial size.
This paper investigates the impact of query topology on the difficulty of answering conjunctive queries in the presence of OWL 2 QL ontologies. Our first contribution is to clarify the worst-case size of positive existential (PE), non-recursive Datal
Concept lattices are well-known conceptual structures that organise interesting patterns-the concepts-extracted from data. In some applications, such as software engineering or data mining, the size of the lattice can be a problem, as it is often too
We consider the Graver basis, the universal Groebner basis, a Markov basis and the set of the circuits of a toric ideal. Let $A, B$ be any two of these bases such that $A ot subset B$, we prove that there is no polynomial on the size or on the maxima
In this paper, we consider the average size of independent edge sets, also called matchings, in a graph. We characterize the extremal graphs for the average size of matchings in general graphs and trees. In addition, we obtain inequalities between th
Knowledge bases (KBs) are not static entities: new information constantly appears and some of the previous knowledge becomes obsolete. In order to reflect this evolution of knowledge, KBs should be expanded with the new knowledge and contracted from