ترغب بنشر مسار تعليمي؟ اضغط هنا

First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lup

72   0   0.0 ( 0 )
 نشر من قبل Maud Langlois
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY~Lup disk with IRDIS (at 1.6 microns), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 microns). We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY~Lup, at projected separations in the 100 ,au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 microns. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.

قيم البحث

اقرأ أيضاً

We have obtained Hubble Space Telescope (HST) coronagraphic observations of the circumstellar disk around M star TWA 7 using the STIS instrument in visible light. Together with archival observations including HST/NICMOS using the F160W filter and Ver y Large Telescope/SPHERE at $H$-band in polarized light, we investigate the system in scattered light. By studying this nearly face-on system using geometric disk models and Henyey--Greenstein phase functions, we report new discovery of a tertiary ring and a clump. We identify a layered architecture: three rings, a spiral, and an ${approx}150$ au$^2$ elliptical clump. The most extended ring peaks at $28$ au, and the other components are on its outskirts. Our point source detection limit calculations demonstrate the necessity of disk modeling in imaging fainter planets. Morphologically, we witness a clockwise spiral motion, and the motion pattern is consistent with both solid body and local Keplerian; we also observe underdensity regions for the secondary ring that might result from mean motion resonance or moving shadows: both call for re-observations to determine their nature. Comparing multi-instrument observations, we obtain blue STIS-NICMOS color, STIS-SPHERE radial distribution peak difference for the tertiary ring, and high SPHERE-NICMOS polarization fraction; these aspects indicate that TWA 7 could retain small dust particles. By viewing the debris disk around M star TWA 7 at a nearly face-on vantage point, our study allows for the understanding of such disks in scattered light in both system architecture and dust property.
74 - E. Choquet , J. Milli , Z. Wahhaj 2016
We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS F110W images, as well as new coronagraphic H band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.1 (65 AU) to 4.6 (250 AU), and is seen at an inclination of 73degr, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_Jup at projected separations beyond 20 AU from the star (0.34). Comparison between the F110W and H-band images is consistent with a grey color of 49 cetis dust, indicating grains larger than >2microns. Our photometric measurements indicate a scattering efficiency / infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 ceti and hypothetic scenarios for the gas nature and origin.
We present the first scattered light image of the debris disk around HD 129590, a ~1.3 M$_odot$ G1V member of the Scorpius Centaurus association with age ~10-16 Myr. The debris disk is imaged with the high contrast imaging instrument SPHERE at the Ve ry Large Telescope, and is revealed by both the IRDIS and IFS subsytems, operating in the H and YJ bands respectively. The disk has a high infrared luminosity of $L_{textrm{IR}}/L_{textrm{star}}$~5$times$10$^{-3}$, and has been resolved in other studies using ALMA. We detect a nearly edge on ring, with evidence of an inner clearing. We fit the debris disk using a model characterized by a single bright ring, with radius ~60-70 AU, in broad agreement with previous analysis of the target SED. The disk is vertically thin, and has an inclination angle of ~75$^circ$. Along with other previously imaged edge-on disks in the Sco-Cen association such as HD 110058, HD 115600, and HD 111520, this disk image will allow of the structure and morphology of very young debris disks, shortly after the epoch of planet formation has ceased.
We present the first scattered-light image of the debris disk around HD 131835 in $H$ band using the Gemini Planet Imager. HD 131835 is a $sim$15 Myr old A2IV star at a distance of $sim$120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, the disk in scattered light shows similar orientation but different morphology. The scattered-light disk extends from $sim$75 to $sim$210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can well describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis with the northeast side being 1.3 times brighter than the southwest side at a 3-{sigma} level.
Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner wall at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0. 1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the {rho} Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 {mu}m) and K (2.2 {mu}m) bands were synchronized while the 4.5 {mu}m emission lagged by 74.5 +/- 3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 AU from the protostar on average, with an error of order 0.01 AU. This size is likely larger than the range of magnetospheric truncations, and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ~1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا