ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Scattered Light Image of the Debris Disk around the Sco-Cen target HD 129590

277   0   0.0 ( 0 )
 نشر من قبل Elisabeth Matthews
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first scattered light image of the debris disk around HD 129590, a ~1.3 M$_odot$ G1V member of the Scorpius Centaurus association with age ~10-16 Myr. The debris disk is imaged with the high contrast imaging instrument SPHERE at the Very Large Telescope, and is revealed by both the IRDIS and IFS subsytems, operating in the H and YJ bands respectively. The disk has a high infrared luminosity of $L_{textrm{IR}}/L_{textrm{star}}$~5$times$10$^{-3}$, and has been resolved in other studies using ALMA. We detect a nearly edge on ring, with evidence of an inner clearing. We fit the debris disk using a model characterized by a single bright ring, with radius ~60-70 AU, in broad agreement with previous analysis of the target SED. The disk is vertically thin, and has an inclination angle of ~75$^circ$. Along with other previously imaged edge-on disks in the Sco-Cen association such as HD 110058, HD 115600, and HD 111520, this disk image will allow of the structure and morphology of very young debris disks, shortly after the epoch of planet formation has ceased.


قيم البحث

اقرأ أيضاً

We present the first scattered-light image of the debris disk around HD 131835 in $H$ band using the Gemini Planet Imager. HD 131835 is a $sim$15 Myr old A2IV star at a distance of $sim$120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, the disk in scattered light shows similar orientation but different morphology. The scattered-light disk extends from $sim$75 to $sim$210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can well describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis with the northeast side being 1.3 times brighter than the southwest side at a 3-{sigma} level.
74 - E. Choquet , J. Milli , Z. Wahhaj 2016
We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS F110W images, as well as new coronagraphic H band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.1 (65 AU) to 4.6 (250 AU), and is seen at an inclination of 73degr, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_Jup at projected separations beyond 20 AU from the star (0.34). Comparison between the F110W and H-band images is consistent with a grey color of 49 cetis dust, indicating grains larger than >2microns. Our photometric measurements indicate a scattering efficiency / infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 ceti and hypothetic scenarios for the gas nature and origin.
We present a Subaru/IRCS H-band image of the edge-on debris disk around the F2V star HD 15115. We detected the debris disk, which has a bow shape and an asymmetric surface brightness, at a projected separation of 1--3 (~50--150 AU). The disk surface brightness is ~0.5--1.5 mag brighter on the western side than on the eastern side. We use an inclined annulus disk model to probe the disk geometry. The model fitting suggests that the disk has an inner hole with a radius of 86 AU and an eccentricity of 0.06. The disk model also indicates that the amount of dust on the western side is 2.2 times larger than that on the eastern side. A several Jupiter-mass planet may exist at $gtrsim$45 AU and capture grains at the Lagrangian points to open the eccentric gap. This scenario can explain both the eccentric gap and the difference in the amount of dust. In case of the stellar age of several 100 Myr, a dramatic planetesimal collision possibly causes the dust to increase in the western side. Interstellar medium interaction is also considered as a possible explanation of the asymmetric surface brightness, however, it hardly affect large grains in the vicinity of the inner hole.
215 - M. Bonnefoy , J. Milli , F. Menard 2016
In 2015, we initiated a survey of Scorpius-Centaurus A-F stars that are predicted to host warm-inner and cold-outer belts of debris similar to the case of the system HR~8799. The survey aims to resolve the disks and detect planets responsible for the disk morphology. In this paper, we study the F-type star HIP~67497 and present a first-order modelisation of the disk in order to derive its main properties. We used the near-infrared integral field spectrograph (IFS) and dual-band imager IRDIS of VLT/SPHERE to obtain angular-differential imaging observations of the circumstellar environnement of HIP~67497. We removed the stellar halo with PCA and TLOCI algorithms. We modeled the disk emission with the GRaTeR code. We resolve a ring-like structure that extends up to $sim$450 mas ($sim$50 au) from the star in the IRDIS and IFS data. It is best reproduced by models of a non-eccentric ring with an inclination of $80pm1^{circ}$, a position angle of $-93pm1^{circ}$, and a semi-major axis of $59pm3$ au. We also detect an additional, but fainter, arc-like structure with a larger extension (0.65 arcsec) South of the ring that we model as a second belt of debris at $sim$130 au. We detect 10 candidate companions at separations $geq$1. We estimate the mass of putative perturbers responsible for the disk morphology and compare it to our detection limits. Additional data are needed to find those perturbers, and to relate our images to large-scale structures seen with HST/STIS.
As part of our on-going survey we have carried out high-contrast imaging with VLT/SPHERE/IRDIS to obtain polarized and total intensity images of the young ($11^{+16}_{-7}$Myr old) K3IV star Wray 15-788 within the Lower Centaurus Crux subgroup of Sco- Cen. For the total intensity images, we remove the stellar halo by an approach based on reference star differential imaging in combination with principal component analysis. Both total intensity and polarimetric data resolve a disk around Wray 15-788. Modeling of the stellar spectral energy distribution suggests that this is a protoplanetary disk at a transition stage. We detect a bright, outer ring at a projected separation of $sim$370mas ($approx$56au), hints for inner substructures at $sim$170mas ($approx$28au) and a gap in between. Only within a position angle range of $60^circ<varphi<240^circ$, we are confident at 5$sigma$ level to detect actual scattered light flux from the outer ring of the disk; the remaining part is indistinguishable from background noise. For the detected part of the outer ring we determine a disk inclination of $i$=21$^circpm$6$^circ$ and a position angle of $varphi$=76$^circpm$16$^circ$. Furthermore, we find that Wray 15-788 is part of a binary system with the A2V star HD 98363 at a separation of $sim$50 ($approx$6900au). The detection of only half of the outer ring might be due to shadowing by a misaligned inner disk. A potential substellar companion can cause the misalignment of the inner structures and can be responsible for clearing the detected gap from scattering material. We can not, however, rule out the possibility of a non-detection due to our limited signal to noise ratio, combined with brightness azimuthal asymmetry. From our data, we can exclude companions more massive than 10$M_mathrm{jup}$ within the gap at a separation of $sim$230mas ($approx$35au).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا