ﻻ يوجد ملخص باللغة العربية
The combination of high-dimensionality and disparity of time scales encountered in many problems in computational physics has motivated the development of coarse-grained (CG) models. In this paper, we advocate the paradigm of data-driven discovery for extract- ing governing equations by employing fine-scale simulation data. In particular, we cast the coarse-graining process under a probabilistic state-space model where the transition law dic- tates the evolution of the CG state variables and the emission law the coarse-to-fine map. The directed probabilistic graphical model implied, suggests that given values for the fine- grained (FG) variables, probabilistic inference tools must be employed to identify the cor- responding values for the CG states and to that end, we employ Stochastic Variational In- ference. We advocate a sparse Bayesian learning perspective which avoids overfitting and reveals the most salient features in the CG evolution law. The formulation adopted enables the quantification of a crucial, and often neglected, component in the CG process, i.e. the pre- dictive uncertainty due to information loss. Furthermore, it is capable of reconstructing the evolution of the full, fine-scale system. We demonstrate the efficacy of the proposed frame- work in high-dimensional systems of random walkers.
Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expen
Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. H
Obtaining coarse-grained models that accurately incorporate finite-size effects is an important open challenge in the study of complex, multi-scale systems. We apply Langevin regression, a recently developed method for finding stochastic differential
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that th
The purpose of physics is to describe nature from elementary particles all the way up to cosmological objects like cluster of galaxies and black holes. Although a unified description for all this spectrum of events is desirable, this would be highly