ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-constrained, data-driven discovery of coarse-grained dynamics

232   0   0.0 ( 0 )
 نشر من قبل Phaedon-Stelios Koutsourelakis
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of high-dimensionality and disparity of time scales encountered in many problems in computational physics has motivated the development of coarse-grained (CG) models. In this paper, we advocate the paradigm of data-driven discovery for extract- ing governing equations by employing fine-scale simulation data. In particular, we cast the coarse-graining process under a probabilistic state-space model where the transition law dic- tates the evolution of the CG state variables and the emission law the coarse-to-fine map. The directed probabilistic graphical model implied, suggests that given values for the fine- grained (FG) variables, probabilistic inference tools must be employed to identify the cor- responding values for the CG states and to that end, we employ Stochastic Variational In- ference. We advocate a sparse Bayesian learning perspective which avoids overfitting and reveals the most salient features in the CG evolution law. The formulation adopted enables the quantification of a crucial, and often neglected, component in the CG process, i.e. the pre- dictive uncertainty due to information loss. Furthermore, it is capable of reconstructing the evolution of the full, fine-scale system. We demonstrate the efficacy of the proposed frame- work in high-dimensional systems of random walkers.



قيم البحث

اقرأ أيضاً

Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expen sive simulations is the definition of coarse-grained molecular models. Existing coarse-graining approaches define an effective interaction potential to match defined properties of high-resolution models or experimental data. In this paper, we reformulate coarse-graining as a supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-validation to select and compare the performance of different models. We introduce CGnets, a deep learning approach, that learns coarse-grained free energy functions and can be trained by a force matching scheme. CGnets maintain all physically relevant invariances and allow one to incorporate prior physics knowledge to avoid sampling of unphysical structures. We show that CGnets can capture all-atom explicit-solvent free energy surfaces with models using only a few coarse-grained beads and no solvent, while classical coarse-graining methods fail to capture crucial features of the free energy surface. Thus, CGnets are able to capture multi-body terms that emerge from the dimensionality reduction.
62 - Shu Wang , Zhan Ma , Wenxiao Pan 2021
Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. H owever, it usually experiences significantly altered dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that can faithfully preserve dynamics, previous efforts mainly focused on equilibrium systems. In contrast, various soft matter systems are known out of equilibrium. Therefore, the present work concerns non-equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium dynamics and is generally applicable to any non-equilibrium process and any observable of interest. To this end, the dynamic equation of a CG variable is built in the form of the non-stationary generalized Langevin equation (nsGLE) to account for the dependence of non-equilibrium processes on the initial conditions, where the two-time memory kernel is determined from the data of the two-time auto-correlation function of the non-equilibrium trajectory-averaged observable of interest. By embedding the non-stationary non-Markovian process in an extended stochastic framework, an explicit form of the non-stationary random noise in the nsGLE is introduced, and the cost is significantly reduced for solving the nsGLE to predict the non-equilibrium dynamics of the CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the memory kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimization process is proposed for the parameterization, a non-convex and high-dimensional optimization problem.
Obtaining coarse-grained models that accurately incorporate finite-size effects is an important open challenge in the study of complex, multi-scale systems. We apply Langevin regression, a recently developed method for finding stochastic differential equation (SDE) descriptions of realistically-sampled time series data, to understand finite-size effects in the Kuramoto model of coupled oscillators. We find that across the entire bifurcation diagram, the dynamics of the Kuramoto order parameter are statistically consistent with an SDE whose drift term has the form predicted by the Ott-Antonsen ansatz in the $Nto infty$ limit. We find that the diffusion term is nearly independent of the bifurcation parameter, and has a magnitude decaying as $N^{-1/2}$, consistent with the central limit theorem. This shows that the diverging fluctuations of the order parameter near the critical point are driven by a bifurcation in the underlying drift term, rather than increased stochastic forcing.
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that th e corresponding coarse-grained entropy production contains information on microscopic currents that are not captured by the Fokker-Planck equation and thus cannot be deduced from it. We study a discrete-state and a continuous-state system, deriving in both the cases an analytical expression for the coarse-graining corrections to the entropy production. This result elucidates the limits in which there is no loss of information in passing from a Master Equation to a Fokker-Planck equation describing the same system. Our results are amenable of experimental verification, which could help to infer some information about the underlying microscopic processes.
The purpose of physics is to describe nature from elementary particles all the way up to cosmological objects like cluster of galaxies and black holes. Although a unified description for all this spectrum of events is desirable, this would be highly impractical. To not get lost in unnecessary details, effective descriptions are mandatory. Here we analyze the dynamics that may emerge from a full quantum description when one does not have access to all the degrees of freedom of a system. More concretely, we describe the properties of the dynamics that arise from quantum mechanics if one has access only to a coarse-grained description of the system. We obtain that the effective maps are not necessarily of Kraus form, due to correlations between accessible and nonaccessible degrees of freedom, and that the distance between two effective states may increase under the action of the effective map. We expect our framework to be useful for addressing questions such as the thermalization of closed quantum systems, as well as the description of measurements in quantum mechanics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا