ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust modeling of the combined ALMA and SPHERE datasets of HD163296. Is HD163296 really a Meeus group II disk?

63   0   0.0 ( 0 )
 نشر من قبل Gabriela Muro-Arena
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Multi-wavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims. We aimed to construct a 3-dimensional model of HD 163296 capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the SED of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods. The disk was modelled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modelled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results. While three rings are observed in the disk midplane in millimeter thermal emission at $sim$80, 124 and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane, and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and NIR wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.



قيم البحث

اقرأ أيضاً

120 - D. Mesa , M. Langlois , A. Garufi 2019
HD163296 is a Herbig Ae/Be star known to host a protoplanetary disk with a ringed structure. To explain the disk features, previous works proposed the presence of planets embedded into the disk. We have observed HD163296 with the near-infrared (NIR) branch of SPHERE composed by IRDIS and IFS with the aim to put tight constraints on the presence of substellar companions around this star. Despite the low rotation of the field of view during our observation we were able to put upper mass limits of few M_Jup around this object. These limits do not allow to give any definitive conclusion about the planets proposed through the disk characteristics. On the other hand, our results seem to exclude the presence of the only candidate proposed until now using direct imaging in the NIR even if some caution has to be taken considered the different wavelength bands of the two observations.
We present ALMA images of the sub-mm continuum polarisation and spectral index of the protoplanetary ringed disk HD163296. The polarisation fraction at 870{mu}m is measured to be ~0.9% in the central core and generally increases with radius along the disk major axis. It peaks in the gaps between the dust rings, and the largest value (~4%) is found between rings 1 and 2. The polarisation vectors are aligned with the disk minor axis in the central core, but become more azimuthal in the gaps, twisting by up to +/-9degrees in the gap between rings 1 and 2. These general characteristics are consistent with a model of self-scattered radiation in the ringed structure, without requiring an additional dust alignment mechanism. The 870/1300{mu}m dust spectral index exhibits minima in the centre and the inner rings, suggesting these regions have high optical depths. However, further refinement of the dust or the disk model at higher resolution is needed to reproduce simultaneously the observed degree of polarisation and the low spectral index.
135 - M. Benisty , A. Natta , A. Isella 2009
We present new long-baseline spectro-interferometric observations of the HerbigAe star HD163296 obtained in the H and K bands with the AMBER instrument at VLTI. The observations cover a range of spatial resolutions between 3 and 12 milli-arcseconds, with a spectral resolution of ~30. With a total of 1481 visibilities and 432 closure phases, they result in the best (u,v) coverage achieved on a young star so far. The circumstellar material is resolved at the sub-AU spatial scale and closure phase measurements indicate a small but significant deviation from point-symmetry. We discuss the results assuming that the near-infrared excess in HD163296 is dominated by the emission of a circumstellar disk. A successful fit to the spectral energy distribution, near-infrared visibilities and closure phases is found with a model where a dominant contribution to the H and K band emissions arises from an optically thin, smooth and point-symmetric region extending from about 0.1 to 0.45 AU. At the latter distance from the star, silicates condense, the disk becomes optically thick and develops a puffed-up rim, whose skewed emission can account for the non-zero closure phases. We discuss the nature of the inner disk emission and tentatively rule out dense molecular gas as well as optically thin atomic or ionized gas as its possible origin. We propose instead that the inner emission traces the presence of very refractory grains in a partially cleared region, extending at least to 0.5 AU. If so, we may be observing the disk of HD163296 just before it reaches the transition disk phase. However, we note that the nature of the refractory grains or even the possibility for any grain to survive at the very high temperatures we require (~2100-2300 K at 0.1 AU from the star) is unclear and should be investigated further.
We aim to reproduce the DCO$^+$ emission in the disk around HD163296 using a simple 2D chemical model for the formation of DCO$^+$ through the cold deuteration channel and a parametric treatment of the warm deuteration channel. We use data from ALMA in band 6 to obtain a resolved spectral imaging data cube of the DCO$^+$ $J$=3--2 line in HD163296 with a synthesized beam of 0.53$times$ 0.42. We adopt a physical structure of the disk from the literature that reproduces the spectral energy distribution. We then apply a simplified chemical network for the formation of DCO$^+$ that uses the physical structure of the disk as parameters along with a CO abundance profile, a constant HD abundance and a constant ionization rate. Finally, from the resulting DCO$^+$ abundances, we calculate the non-LTE emission using the 3D radiative transfer code LIME. The observed DCO$^+$ emission is reproduced by a model with cold deuteration producing abundances up to $1.6times 10^{-11}$. Warm deuteration, at a constant abundance of $3.2times 10^{-12}$, becomes fully effective below 32 K and tapers off at higher temperatures, reproducing the lack of DCO$^+$ inside 90 AU. Throughout the DCO$^+$ emitting zone a CO abundance of $2times 10^{-7}$ is found, with $sim$99% of it frozen out below 19 K. At radii where both cold and warm deuteration are active, warm deuteration contributes up to 20% of DCO$^+$, consistent with detailed chemical models. The decrease of DCO$^+$ at large radii is attributed to a temperature inversion at 250 AU, which raises temperatures above values where cold deuteration operates. Increased photodesorption may also limit the radial extent of DCO$^+$. The corresponding return of the DCO$^+$ layer to the midplane, together with a radially increasing ionization fraction, reproduces the local DCO$^+$ emission maximum at $sim$260 AU.
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) de tect two asymmetries on the ring at $rsim$20~au. They could be two vortices in early evolution, the destruction of a large scale vortex, or double continuum emission peaks with different dust sizes. We also found millimeter emissions with $sim$50~$mu$Jy (a lower limit dust mass of 0.3~$M_{rm Moon}$) inside the 3-au ring. To characterize these emissions, we modeled the spectral energy distribution (SED) of DM~Tau using a Monte Carlo radiative transfer code. We found that an additional ring at $r=$ 1~au could explain both the DM~Tau SED and the central point source. The disk midplane temperature at the 1-au ring calculated in our modeling is less than the typical water sublimation temperature of 150~K, prompting the possibility of forming small icy planets there.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا