ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD163296: evidence for refractory dust?

128   0   0.0 ( 0 )
 نشر من قبل Myriam Benisty
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new long-baseline spectro-interferometric observations of the HerbigAe star HD163296 obtained in the H and K bands with the AMBER instrument at VLTI. The observations cover a range of spatial resolutions between 3 and 12 milli-arcseconds, with a spectral resolution of ~30. With a total of 1481 visibilities and 432 closure phases, they result in the best (u,v) coverage achieved on a young star so far. The circumstellar material is resolved at the sub-AU spatial scale and closure phase measurements indicate a small but significant deviation from point-symmetry. We discuss the results assuming that the near-infrared excess in HD163296 is dominated by the emission of a circumstellar disk. A successful fit to the spectral energy distribution, near-infrared visibilities and closure phases is found with a model where a dominant contribution to the H and K band emissions arises from an optically thin, smooth and point-symmetric region extending from about 0.1 to 0.45 AU. At the latter distance from the star, silicates condense, the disk becomes optically thick and develops a puffed-up rim, whose skewed emission can account for the non-zero closure phases. We discuss the nature of the inner disk emission and tentatively rule out dense molecular gas as well as optically thin atomic or ionized gas as its possible origin. We propose instead that the inner emission traces the presence of very refractory grains in a partially cleared region, extending at least to 0.5 AU. If so, we may be observing the disk of HD163296 just before it reaches the transition disk phase. However, we note that the nature of the refractory grains or even the possibility for any grain to survive at the very high temperatures we require (~2100-2300 K at 0.1 AU from the star) is unclear and should be investigated further.



قيم البحث

اقرأ أيضاً

We aim to reproduce the DCO$^+$ emission in the disk around HD163296 using a simple 2D chemical model for the formation of DCO$^+$ through the cold deuteration channel and a parametric treatment of the warm deuteration channel. We use data from ALMA in band 6 to obtain a resolved spectral imaging data cube of the DCO$^+$ $J$=3--2 line in HD163296 with a synthesized beam of 0.53$times$ 0.42. We adopt a physical structure of the disk from the literature that reproduces the spectral energy distribution. We then apply a simplified chemical network for the formation of DCO$^+$ that uses the physical structure of the disk as parameters along with a CO abundance profile, a constant HD abundance and a constant ionization rate. Finally, from the resulting DCO$^+$ abundances, we calculate the non-LTE emission using the 3D radiative transfer code LIME. The observed DCO$^+$ emission is reproduced by a model with cold deuteration producing abundances up to $1.6times 10^{-11}$. Warm deuteration, at a constant abundance of $3.2times 10^{-12}$, becomes fully effective below 32 K and tapers off at higher temperatures, reproducing the lack of DCO$^+$ inside 90 AU. Throughout the DCO$^+$ emitting zone a CO abundance of $2times 10^{-7}$ is found, with $sim$99% of it frozen out below 19 K. At radii where both cold and warm deuteration are active, warm deuteration contributes up to 20% of DCO$^+$, consistent with detailed chemical models. The decrease of DCO$^+$ at large radii is attributed to a temperature inversion at 250 AU, which raises temperatures above values where cold deuteration operates. Increased photodesorption may also limit the radial extent of DCO$^+$. The corresponding return of the DCO$^+$ layer to the midplane, together with a radially increasing ionization fraction, reproduces the local DCO$^+$ emission maximum at $sim$260 AU.
70 - L. Chen , A. Kospal , P. Abraham 2017
An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pretransitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. We find that the observations are consistent with optically thin gray dust lying at Rin ~ 0.07 au, passively heated to T ~ 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin ~ 0.06 au, but this model is plausible only if refractory dust species enduring ~2400 K exist in the inner disk.
A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features sugge st a disk structure with inner and outer dust components, separated by a dust-depleted region (or gap). We here report on the first interferometric observations of the disk around the Herbig Ae star HD 139614. Its infrared spectrum suggests a flared disk, and presents pre-transitional features,namely a substantial near-infrared excess accompanied by a dip around 6 microns and a rising mid-infrared part. In this framework, we performed a study of the spectral energy distribution (SED) and the mid-infrared VLTI/MIDI interferometric data to constrain thespatial structure of the inner dust disk region and assess its possibly multi-component structure. We based our work on a temperature-gradient disk model that includes dust opacity. While we could not reproduce the SED and interferometric visibilities with a one-component disk, a better agreement was obtained with a two-component disk model composed of an optically thin inner disk extending from 0.22 to 2.3 au, a gap, and an outer temperature-gradient disk starting at 5.6 au. Therefore, our modeling favors an extended and optically thin inner dust component and in principle rules out the possibility that the near-infrared excess originates only from a spatially confined region. Moreover, the outer disk is characterized by a very steep temperature profile and a temperature higher than 300 K at its inner edge. This suggests the existence of a warm component corresponding to a scenario where the inner edge of the outer disk is directly illuminated by the central star. This is an expected consequence of the presence of a gap, thus indicative of a pre-transitional structure.
102 - A. Carmona , W.F. Thi , I. Kamp 2016
Context: Quantifying the gas content inside the dust gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the disk of HD 139614, a Herbig Ae star with a transition disk exhibit ing a dust gap from 2.3 to 6 AU. Methods: We have obtained ESO/VLT CRIRES high-resolution spectra of CO ro-vibrational emission. We derived constraints on the disks structure by modeling the line-profiles, the spectroastrometric signal, and the rotational diagrams using flat Keplerian disk models. Results: We detected v=1-0 12CO, 2-1 12CO, 1-0 13CO, 1-0 C18O, and 1-0 C17O ro-vibrational lines. 12CO v=1-0 lines have an average width of 14 km/s, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km/s narrower, and are dominated by emission at R>6 AU. The 12CO v=1-0 line-profile indicates that if there is a gap in the gas it must be narrower than 2 AU. We find that a drop in the gas surface density (delta_gas) at R<5-6 AU is required to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Delta_gas can range from 10^-2 to 10^-4 depending on the gas-to-dust ratio of the outer disk. We find that at 1<R<6 AU the gas surface density profile is flat or increases with radius. We derive a gas column density at 1<R<6 AU of NH=3x10^19 - 10^21 cm^-2. We find a 5sigma upper limit on NCO at R<1 AU of 5x10^15 cm^-2 (NH<5x10^19 cm^-2). Conclusions: The dust gap in the disk of HD 139614 has gas. The gas surface density in the disk at R<6 AU is significantly lower than the surface density expected from HD 139614s accretion rate assuming a viscous alpha-disk model. The gas density drop, the non-negative density gradient of the gas inside 6 AU, and the absence of a wide (>2 AU) gas gap suggest the presence of an embedded <2 MJ planet at around 4 AU.
Context. The inner few au region of planet-forming disks is a complex environment. High angular resolution observations have a key role in understanding the disk structure and the dynamical processes at work. Aims. In this study we aim to characteriz e the mid-infrared brightness distribution of the inner disk of the young intermediate-mass star HD 163296, from VLTI/MATISSE observations. Methods. We use geometric models to fit the data. Our models include a smoothed ring, a flat disk with inner cavity, and a 2D Gaussian. The models can account for disk inclination and for azimuthal asymmetries as well. We also perform numerical hydro-dynamical simulations of the inner edge of the disk. Results. Our modeling reveals a significant brightness asymmetry in the L-band disk emission. The brightness maximum of the asymmetry is located at the NW part of the disk image, nearly at the position angle of the semimajor axis. The surface brightness ratio in the azimuthal variation is $3.5 pm 0.2$. Comparing our result on the location of the asymmetry with other interferometric measurements, we confirm that the morphology of the $r<0.3$ au disk region is time-variable. We propose that this asymmetric structure, located in or near the inner rim of the dusty disk, orbits the star. For the physical origin of the asymmetry, we tested a hypothesis where a vortex is created by Rossby wave instability, and we find that a unique large scale vortex may be compatible with our data. The half-light radius of the L-band emitting region is $0.33pm 0.01$ au, the inclination is ${52^circ}^{+5^circ}_{-7^circ}$, and the position angle is $143^circ pm 3^circ$. Our models predict that a non-negligible fraction of the L-band disk emission originates inside the dust sublimation radius for $mu$m-sized grains. Refractory grains or large ($gtrsim 10 mu$m-sized) grains could be the origin for this emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا