ﻻ يوجد ملخص باللغة العربية
A photofragmentation study of gas-phase indole (C$_8$H$_7$N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon $1s$ orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.
Molecular absorption and photo-electron spectra can be efficiently predicted with real-time time-dependent density-functional theory (TDDFT). We show here how these techniques can be easily extended to study time-resolved pump-probe experiments in wh
In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics
We demonstrate the correspondence between theoretically calculated K-shell resonances lying below the K-edge in multiple ionization states of an element (Pradhan et al. 2009), and recently observed K-alpha resonances in high-intensity X-ray free-elec
Inter-Coulombic decay (ICD) resonances in the photoionization of Cl@C60 endofullerene molecule are calculated using a perturbative density functional theory (DFT) method. This is the first ICD study of an open shell atom in a fullerene cage. Three cl
Based on a combined quantum-classical treatment, a complete study of the strong field dynamics of H2+, i.e. including all nuclear and electronic DOF as well as dissociation and ionization, is presented. We find that the ro-vibrational nuclear dynamic