ترغب بنشر مسار تعليمي؟ اضغط هنا

Density functional study of the variants of inter-Coulombic decay resonances in the photoionization of Cl@C60

254   0   0.0 ( 0 )
 نشر من قبل Himadri S. Chakraborty
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inter-Coulombic decay (ICD) resonances in the photoionization of Cl@C60 endofullerene molecule are calculated using a perturbative density functional theory (DFT) method. This is the first ICD study of an open shell atom in a fullerene cage. Three classes of resonances are probed: (i) Cl inner vacancies decaying through C60 outer continua, (ii) C60 inner vacancies decaying through Cl outer continua, and (iii) inner vacancies of either system decaying through the continua of Cl-C60 hybrid levels, the hybrid Auger-ICD resonances. Comparisons with Ar@C60 results reveal that the properties of hybrid Auger-ICD resonances are affected by the extent of level hybridization.



قيم البحث

اقرأ أيضاً

We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe$^+$ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions ar e an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay (ICD) in HeNe dimers. We find that the ICD lifetime strongly increases with increasing vibrational state.
We study the photoionization properties of the C_60 versus C_240 molecule in a spherical jellium frame of density functional method. Two different approximations to the exchange-correlation (xc) functional are used: (i) The Gunnerson-Lundqvist parame trization [Phys. Rev. B 13, 4274 (1976)] with an explicit correction for the electron self-interaction (SIC) and (ii) a gradient-dependent augmentation of (i) by using the van Leeuwen and Baerends model potential [Phys. Rev. A 49, 2421 (1994)], in lieu of SIC, to implicitly restore electrons asymptotic properties. Ground state results from the two schemes for both molecules show differences in the shapes of mean-field potentials and bound-level properties. The choice of a xc scheme also significantly alters the dipole single-photoionization cross sections obtained by an abinitio method that incorporates linear-response dynamical correlations. Differences in the structures and ionization responses between C_60 and C_240 uncover the effect of molecular size on the underlying physics. Analysis indicates that the collective plasmon resonances with the gradient-based xc-option produce results noticeably closer to the experimental data available for C_60.
Using synchrotron radiation we simultaneously ionize and excite one helium atom of a helium dimer (He_2) in a shakeup process. The populated states of the dimer ion (i.e. He^[*+](n = 2; 3)-He) are found to deexcite via interatomic coulombic decay. Th is leads to the emission of a second electron from the neutral site and a subsequent coulomb explosion. In this letter we present a measurement of the momenta of fragments that are created during this reaction. The electron energy distribution and the kinetic energy release of the two He^+ ions show pronounced oscillations which we attribute to the structure of the vibrational wave function of the dimer ion.
Our previous studies [J. Phys. B 53, 125101 (2020); Euro. Phys. J. D 74, 191 (2020)] have predicted that the atom-fullerene hybrid photoionization properties for X = Cl, Br and I endohedrally confined in C60 are different before and after an electron transfers from C60 to the halogen. It was further found as a rule that the ionization dynamics is insensitive to the C60 level the electron originates from to produce X-@C60+. In the current study, we report an exception to this rule in F@C60. It is found that when the electron vacancy is situated in the C60 level that participates in the hybridization in F-@C60+, the mixing becomes dramatically large leading to strong modifications in the photoionization of the hybrid levels. But when the vacancy is at any other pure level of C60, the level-invariance is retained showing weak hybridization. Even though this case of F@C60 is an anomaly in the halogen@C60 series, the phenomenon can be more general and can occur with compounds of other atoms caged in a variety of fullerenes. In addition, possible experimental studies are suggested to benchmark the present results.
142 - M. Ya. Amusia 2007
It is demonstrated that in photoabsorption by endohedral atoms some atomic Giant resonances are almost completely destroyed while the others are totally preserved due to different action on it of the fullerenes shell. As the first example we discuss the 4d10 Giant resonance in Xe@C60 whereas as the second serves the Giant autoionization resonance in Eu@C60. The qualitative difference comes from the fact that photoelectrons from the 4d Giant resonance has small energies (tens of eV) and are strongly reflected by the C60 fullerenes shell. As to the Eu@C60, Giant autoionization leads to fast photoelectrons (about hundred eV) that go out almost untouched by the C60 shell. As a result of the outgoing electrons energy difference the atomic Giant resonances will be largely destroyed in A@C60 while the Giant autoionization resonance will be almost completely preserved. Thus, on the way from Xe@C60 Giant resonance to Eu@C60 Giant autoionization resonance the oscillation structure should disappear. Similar will be the decrease of oscillations on the way from pure Giant to pure Giant autoionization resonances for the angular anisotropy parameters. At Giant resonance frequencies the role of polarization of the fullerenes shell by the incoming photon beam is inessential. Quite different is the situation for the outer electrons in Eu@C60, the photoionization of which will be also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا