ﻻ يوجد ملخص باللغة العربية
Let $v(F)$ denote the number of vertices in a fixed connected pattern graph $F$. We show an infinite family of patterns $F$ such that the existence of a subgraph isomorphic to $F$ is expressible by a first-order sentence of quantifier depth $frac23,v(F)+1$, assuming that the host graph is sufficiently large and connected. On the other hand, this is impossible for any $F$ with using less than $frac23,v(F)-2$ first-order variables.
Let $F$ be a connected graph with $ell$ vertices. The existence of a subgraph isomorphic to $F$ can be defined in first-order logic with quantifier depth no better than $ell$, simply because no first-order formula of smaller quantifier depth can dist
Given a graph $F$, let $I(F)$ be the class of graphs containing $F$ as an induced subgraph. Let $W[F]$ denote the minimum $k$ such that $I(F)$ is definable in $k$-variable first-order logic. The recognition problem of $I(F)$, known as Induced Subgrap
In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs $G_1$ and $G_2$, one looks for a graph with the maximum number of vertices being both an induced subgraph of $G_1$ and $G_2$. MCIS is among the most studied classical
We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Grobner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if th
We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the