ترغب بنشر مسار تعليمي؟ اضغط هنا

Fidelity of bacterial translation initiation: a stochastic kinetic model

146   0   0.0 ( 0 )
 نشر من قبل Debashish Chowdhury
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dipanwita Ghanti




اسأل ChatGPT حول البحث

During the initiation stage of protein synthesis, a ribosomal initiation complex (IC) is assembled on a messenger RNA (mRNA) template. In bacteria, the speed and accuracy of this assembly process are regulated by the complementary activities of three essential initiation factors (IFs). Selection of an authentic N-formylmethionyl-transfer RNA (fMet-tRNAtextsuperscript{fMet}) and the canonical, triplet-nucleotide mRNA start codon are crucial events during assembly of a canonical, ribosomal 70S IC. Mis-initiation due to the aberrant selection of an elongator tRNA or a non-canonical start codon are rare events that result in the assembly of a pseudo 70S IC or a non-canonical 70S IC, respectively. Here, we have developed a theoretical model for the stochastic kinetics of canonical-, pseudo-, and non-canonical 70S IC assembly that includes all of the major steps of the IC assembly process that have been observed and characterized in ensemble kinetic-, single-molecule kinetic-, and structural studies of the fidelity of translation initiation. Specifically, we use the rates of the individual steps in the IC assembly process and the formalism of first-passage times to derive exact analytical expressions for the probability distributions for the assembly of canonical-, pseudo- and non-canonical 70S ICs. In order to illustrate the power of this analytical approach, we compare the theoretically predicted first-passage time distributions with the corresponding computer simulation data. We also compare the mean times required for completion of these assemblies with experimental estimates. In addition to generating new, testable hypotheses, our theoretical model can also be easily extended as new experimental 70S IC assembly data become available, thereby providing a versatile tool for interpreting these data and developing advanced models of the mechanism and regulation of translation initiation.



قيم البحث

اقرأ أيضاً

We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix, and that these enzymes bind more favourably to regi ons where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up-regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down-regulate transcription. This article has been published in Physical Review Letters, May 2016.
Inspired by recent experiments on the effects of cytosolic crowders on the organization of bacterial chromosomes, we consider a feather-boa type model chromosome in the presence of non-additive crowders, encapsulated within a cylindrical cell. We obs erve spontaneous emergence of complementary helicity of the confined polymer and crowders. This feature is reproduced within a simplified effective model of the chromosome. This latter model further establishes the occurrence of longitudinal and transverse spatial segregation transitions between the chromosome and crowders upon increasing crowder size.
Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduce d from simple thermodynamic arguments. Recently it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of barrier between the two rotation states, one can generate a power-law switching statistics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated `noise can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as equilibrium number of molecules, sensitivities, and the characteristic relaxation time.
Suspensions of self-propelled particles are studied in the framework of two-dimensional (2D) Stokesean hydrodynamics. A formula is obtained for the effective viscosity of such suspensions in the limit of small concentrations. This formula includes th e two terms that are found in the 2D version of Einsteins classical result for passive suspensions. To this, the main result of the paper is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the active suspension. This term explains the experimental observation of a decrease in effective viscosity in active suspensions.
A simple flashing ratchet model in two dimensions is proposed to simulate the hand-over-hand motion of two head molecular motors like kinesin. Extensive Langevin simulations of the model are performed. Good qualitative agreement with the expected beh avior is observed. We discuss different regimes of motion and efficiency depending of model parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا